957 resultados para contamination


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two year, comprehensive, quantitative investigation was conducted to analyze and identify the spatial distribution of petrogenic and biogenic hydrocarbons in sediments, surface waters, fish and shellfish of Biscayne Bay, Florida. The goal for the first year of the project was to establish baseline information to support oil spill impact assessment and clean-up. One hundred fifty-five sediment and eleven biota samples were collected. The areas sampled included the Miami River, Intracoastal Waterway, tidal flats, access canals and environmentally sensitive shorelines. The second year of the study centered on areas exhibiting petroleum contamination. These areas included the Miami River, Little River, Goulds Canal, Black Creek and Military Canal. Surface and subsurface sediment, biota and surface water were collected. Sample collection, analyses, and data handling for the two year project were conducted so that all information was court-competent and scientifically accurate. Chain of custody was maintained for all samples. Total hydrocarbon content of surface sediments ranged from below detection limits to a high of 2663.44 pg/g. Several sample stations contained petroleum contamination. The majority of biota samples exhibited hydrocarbon concentrations and characteristics that indicated little, if any, petroleum contamination. Surface water samples ranged from 0.78 to 64.47 μg/L and several samples contained petroleum hydrocarbons. Our results indicate several areas of petroleum contamination. These areas are characterized by industrial complexes, port facilities, marinas, major boating routes and many of the major tributaries emptying into Biscayne Bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1999, the Chesapeake Bay Program completed a survey of existing data on chemical contaminants and the potential for bioeffects in 38 tidal river systems of Chesapeake Bay. This review led to the identification of 20 areas for which there were insufficient data to adequately characterize the potential for contaminant bioeffects on the Bay’s living resources. The goal of the present study was to estimate the current status of ecological condition in five of these areas and thus help to complete the overall toxics inventory for the Bay. These five systems included the Chester River, Nanticoke River, Pocomoke River, Lower Mobjack Bay (Poquosin and Back Rivers) and the South and Rhode Rivers. This study utilized a Sediment Quality Triad (SQT) approach in combination with additional water-column contaminant analysis to allow for a “weight of evidence” assessment of environmental condition. A total of 60 stations distributed among the five systems, using a probabilistic stratified random design, were sampled during the summer of 2004 to allow for synoptic measures of sediment contamination, sediment toxicity, and benthic condition. Upon completion of all analyses, stations were assigned to one of four categories based on the three legs of the triad. Stations with high sediment quality had no hits on any of the three legs of the triad; those with moderate quality had one hit; those with marginal quality had two hits; and those with poor quality had hits for all three legs of the triad. The Pocomoke River had by far the largest proportion of the total area (97.5%) classified as having high sediment quality, while the Rhode/South system had the highest proportion (11.4%) classified as poor. None of the stations in the Chester River, Nanticoke River, and Lower Mobjack Bay systems were classified as poor. More than 65% of the area of each of the five systems was classified with high to moderate sediment quality. The Rhode/South system had 30.4% of total area classified with marginally to severely poor quality. The results of this study highlight the importance of using multiple indicators and a “weight of evidence” approach to characterize environmental quality and the potential bioeffects of toxic contaminants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics. "

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subsistence food items can be a health concern in rural Alaska because community members often rely on fish and wildlife resources not routinely monitored for persistent bioaccumulative contaminants and pathogens. Subsistence activities are a large part of the traditional culture, as well as a means of providing protein in the diets for Tribal members. In response to the growing concerns among Native communities, contaminant body burden and histopathological condition of chum and sockeye salmon (Oncorhynchus keta and Oncorhynchus nerka) and the shellfish cockles and softshell clams (Clinocardium nuttallii and Mya arenaria) were assessed. In the Spring of 2010, the fish and shellfish were collected from traditional subsistence harvest areas in the vicinity of Nanwalek, Port Graham, and Seldovia, AK, and were analyzed for trace metals and residues of organic contaminants routinely monitored by the NOAA National Status & Trends Program (NS&T). Additionally, the fish and shellfish were histologically characterized for the presence, prevalence and severity of tissue pathology, disease, and parasite infection. The fish and shellfish sampled showed low tissue contamination, and pathologic effects of the parasites and diseases were absent or minimal. Taken together, the results showed that the fish and shellfish were healthy and pose no safety concern for consumption. This study provides reliable chemistry and histopathology information for local resource managers and Alaska Native people regarding subsistence fish and shellfish use and management needs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was conducted in June 2009 to assess the current status of ecological condition and potential human-health risks throughout subtidal estuarine waters of the Sapelo Island National Estuarine Research Reserve (SINERR) along the coast of Georgia. Samples were collected for multiple indicators of ecosystem condition, including water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids, fecal coliform bacteria and coliphages), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundance of benthic fauna, fish tissue contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). Use of a probabilistic sampling design facilitated the calculation of statistics to estimate the spatial extent of the Reserve classified according to various categories (i.e., Good, Fair, Poor) of ecological condition relative to established thresholds of these indicators, where available. Overall, the majority of subtidal habitat in the SINERR appeared to be healthy, with over half (56.7 %) of the Reserve area having water quality, sediment quality, and benthic biological condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. None of the stations sampled had one or more indicators in all three categories rated as poor/degraded. While these results are encouraging, it should be noted that one or more indicators were rated as poor/degraded in at least one of the three categories over 40% of the Reserve study area, represented by 12 of the 30 stations sampled. Although measures of fish tissue chemical contamination were not included in any of the above estimates, a number of trace metals, pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) were found at low yet detectable levels in some fish at stations where fish were caught. Levels of mercury and total PCBs in some fish specimens fell within EPA guideline values considered safe, given a consumption rate of no more than four fish meals per month. Moreover, PCB congener profiles in sediments and fish in the SINERR exhibit a relative abundance of higher-chlorinated homologs which are uniquely characteristic of Aroclor 1268. It has been well-documented that sediments and fish in the creeks and marshes near the LCP Chemicals Superfund site, near Brunswick, Georgia, also display this congener pattern associated with Aroclor 1268, a highly chlorinated mixture of PCBs used extensively at a chlor-alkali plant that was in operation at the LCP site from 1955-1994. This report provides results suggesting that the protected habitats lying within the boundaries of the SINERR may be experiencing the effects of a legacy of chemical contamination at a site over 40km away. These effects, as well as other potential stressors associated with increased development of nearby coastal areas, underscore the importance of establishing baseline ecological conditions that can be used to track potential changes in the future and to guide management and stewardship of the otherwise relatively unspoiled ecosystems of the SINERR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because fish bioaccumulate* certain chemicals, levels of chemical contaminants in their edible portion must be closely monitored. In recent years, FDA has conducted several surveys designed to determine the occurrence and levels of selected chemicals or groups of chemicals in fish. Previous fish surveillance programs included the Mercury in Wholesale Fish Survey (FY 71), the FY 73 and 74 Comprehensive Fish Surveys, the Canned Tuna Program (FY 75), the Kepone and Mirex Contamination Program (FY 77), and the FY 77 Mercury in Swordfish Program. In addition, recent Compliance Programs for Pesticides and Metals in Foods and Pesticides, Metals, and Industrial Chemicals in Animal Feed have specified coverage of fish and fish products. Because of previous findings and the sustained high level of fish imported into the United States, a separate compliance program dealing solely with chemical contaminants in fish was initiated by the FDA Bureau of Foods in FY 78. The program includes all domestic and imported fish coverage except that directed by the Bureau of Veterinary Medicine for animal feed components derived from fishery products. The earlier surveys indicated that "bottom feeder" species such as catfish generally had the highest levels of pesticides and polychlorinated biphenyls (PCBs). For this reason, coverage at these species has been emphasized. Similarly, tuna has received special attention because it is the most prevalent fish in the U.S. diet and because of potential problems with mercury. Halibut, swordfish, and snapper also were emphasized in the sampling because of potential problems with mercury levels determined in previous years. The findings in this program were used in detecting emerging problems in fish and directing FDA efforts to deal with them. Care must be exercised in drawing conclusions about trends from the data because this Compliance Program was not statistically designed. Sampling objectives and sources may vary from year to year; thus the results are not directly comparable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was conducted, in association with the Alabama and Mississippi National Estuarine Research Reserves (NERRs) in the Gulf of Mexico (GoM) as well as the Georgia, South Carolina, and North Carolina NERRs in the Southeast (SE), to evaluate the impacts of coastal development on tidal creek sentinel habitats, including potential impacts to human health and well-being. Uplands associated with Southeast and Gulf of Mexico tidal creeks, and the salt marshes they drain, are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land cover data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites (Holland et al. 2004, Sanger et al. 2008). The primary objective of this work was to define the relationships between coastal development with its concomitant land cover changes, and non-point source pollution loading and the ecological and human health and wellbeing status of tidal creek ecosystems. Nineteen tidal creek systems, located along the Southeastern United States coast from southern North Carolina to southern Georgia, and five Gulf of Mexico systems from Alabama and Mississippi were sampled during summer (June-August) 2005, 2006 (SE) and 2008 (GoM). Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 29 intertidal and 24 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminant levels including emerging contaminants), pathogen and viral indicators (e.g., fecal coliform, enterococci, F+ coliphages, F- coliphages), and abundance and tissue contamination of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants). Tidal creeks have been identified as a sentinel habitat to assess the impacts of coastal development on estuarine areas in the southeastern US. A conceptual model for tidal creeks in the southeastern US identifies that human alterations (stressors) of upland in a watershed such as increased impervious cover will lead to changes in the physical and chemical environment such as microbial and nutrient pollution (exposures), of a receiving water body which then lead to changes in the living resources (responses). The overall objective of this study is to evaluate the applicability of the current tidal creek classification framework and conceptual model linking tidal creek ecological condition to potential impacts of development and urban growth on ecosystem value and function in the Gulf of Mexico US in collaboration with Gulf of Mexico NERR sites. The conceptual model was validated for the Gulf of Mexico US tidal creeks. The tidal creek classification system developed for the southeastern US could be applied to the Gulf of Mexico tidal creeks; however, some differences were found that warrant further examination. In particular, pollutants appeared to translate further downstream in the Gulf of Mexico US compared to the southeastern US. These differences are likely the result of the morphological and oceanographic differences between the two regions. Tidal creeks appear to serve as sentinel habitats to provide an early warning of the ensuing harm to the larger ecosystem in both the Southeastern and Gulf of Mexico US tidal creeks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents an initial characterization of chemical contamination in coral tissues (Porites astreoides) from southwest Puerto Rico. It is the second technical report from a project to characterize chemical contaminants and assess linkages between contamination and coral condition. The first report quantified chemical contaminants in sediments from southwest Puerto Rico. This document summarizes the analysis of nearly 150 chemical contaminants in coral tissues. Although only eight coral samples were collected, some observations can be made on the correlations between observed tissue and sediment contaminant concentrations. The concentrations of polycyclic aromatic hydrocarbons (PAHs), typically associated with petroleum spills and the combustion of fossil fuels, and polychlorinated biphenyls (PCBs) in the coral tissues were comparable to concentrations found in adjacent sediments. However, the concentration of a chemical contaminant (e.g., PAHs) in the coral tissues at a particular site was not a good predictor of what was in the adjacent sediments. In addition, the types of PAHs found in the coral tissues were somewhat different (higher ratios of alkylated PAHs) than in sediments. The levels of PCBs and DDT in coral tissues appeared higher just outside of Guanica Bay, and there was evidence of a downstream concentration gradient for these two contaminant classes. The trace elements copper, zinc and nickel were frequently detected in coral tissues, and the concentration in the corals was usually comparable to that found in adjacent sediments. Chromium was an exception in that it was not detected in any of the coral tissues analyzed. Additional work is needed to assess how spatial patterns in chemical contamination affect coral condition, abundance and distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NOAA’s Mussel Watch Program was designed to monitor the status and trends of chemical contamination of U.S. coastal waters, including the Great Lakes. The Program began in 1986 and is one of the longest running, continuous coastal monitoring programs that is national in scope. NOAA established Mussel Watch in response to a legislative mandate under Section 202 of Title II of the Marine Protection, Research and Sanctuaries Act (MPRSA) (33 USC 1442). In addition to monitoring contaminants throughout the Nation’s coastal shores, Mussel Watch stores samples in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. In recent years, flame retardant chemicals, known as polybrominated diphenyl ethers (PBDEs), have generated international concern over their widespread distribution in the environment, their potential to bioaccumulate in humans and wildlife, and concern for suspected adverse human health effects. The Mussel Watch Program, with additional funding provided by NOAA’s Oceans and Human Health Initiative, conducted a study of PBDEs in bivalve tissues and sediments. This report, which represents the first national assessment of PBDEs in the U.S. coastal zone, shows that they are widely distributed. PBDE concentrations in both sediment and bivalve tissue correlate with human population density along the U.S. coastline. The national and watershed perspectives given in this report are intended to support research, local monitoring, resource management, and policy decisions concerning these contaminants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document contains analytical methods that detail the procedures for determining major and trace element concentrations in bivalve tissue and sediment samples collected as part of the National Status and Trends Program (NS&T) for the years 2000-2006. Previously published NOAA Technical Memoranda NOS ORCA 71 and 130 (Lauenstein and Cantillo, 1993; Lauenstein and Cantillo, 1998) detail trace element analyses for the years 1984-1992 and 1993-1996, respectively, and include ancillary, histopathology, and contaminant (organic and trace element) analytical methods. The methods presented in this document for trace element analysis were utilized by the NS&T Mussel Watch and Bioeffects Projects. The Mussel Watch Project has been monitoring contaminants in bivalves and sediment for over 20 years, and is the longest active contaminant monitoring program operating in U.S. costal waters. Approximately 280 Mussel Watch sites are monitored on biennial and decadal timescales using bivalve tissue and sediment, respectively. The Bioeffects Project applies the sediment quality approach, which uses sediment contamination measurements, toxicity tests and benthic macroinfauna quantification to characterize pollution in selected estuaries and coastal embayments. Contaminant assessment is a core function of both projects. Although only one contract laboratory was used by the NS&T Program during the specified time period, several analytical methods and instruments were employed. The specific analytical method, including instrumentation and detection limit, is noted for each measurement taken and can be found at http://NSandT.noaa.gov. The major and trace elements measured by the NS&T Program include: Al, Si, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Sn, Sb, Ag, Cd, Hg, Tl and Pb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The National Status and Trends (NS&T) Program has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are therefore important goals of coastal resource management at NOAA. The National Centers for Coastal Ocean Science, and the Office of National Marine Sanctuaries, in cooperation with the U.S. Geological Survey (USGS), University of California Moss Landing Marine Lab (MLML), and the Monterey Bay Aquarium Research Institute (MBARI), conducted ecosystem monitoring and characterization studies within and between marine sanctuaries along the California coast in 2002 and 2004 on the NOAA RV McArthur. One of the objectives was to perform a systematic assessment of the chemical and physical habitats and associated biological communities in soft bottom habitats on the continental shelf and slope in the central California region. This report addresses the magnitude and extent of chemical contamination, and contaminant transport patterns in the region. Ongoing studies of the benthic community are in progress and will be reported in an integrated assessment of habitat quality and the parameters that govern natural resource distributions on the continental margin and in canyons in the region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

随着现代工农业的发展,环境污染日益加剧。农用土壤作为我们赖以生存的基础,大量含砷(Arsenic, As)和铜(Copper, Cu)的化肥和农药的应用造成As、Cu及其他重金属的复合污染日趋加重。蜈蚣草作为一种天然的砷超富集植物,在清除土壤砷污染的应用中备受人们关注。然而,目前的研究多集中在蜈蚣草对单一砷污染的吸收、转运和超富集等方面,几乎没有对土壤复合污染尤其是As、Cu复合污染的的响应和生理机制的研究。本文针对As、Cu复合污染的现实,研究了不同浓度砷、铜复合污染胁迫对蜈蚣草生长和发育的影响,探讨了蜈蚣草对砷、铜复合污染抗性和富集的生理生化机制,以期为蜈蚣草在植物修复复合污染的应用提供理论基础。 主要研究结果如下: 1、以砷超富集植物蜈蚣草成熟孢子为外植体材料,建立了一套成熟的蜈蚣草孢子植株再生体系,包括配子体分化和愈伤组织分化两条途径。为蜈蚣草的生理生化机制以及将来的遗传转化奠定了基础。同时证明了蜈蚣草愈伤组织与其孢子体及配子体一样具有对砷的抗性和超富集特性以及铜抗性。 2、以组培的蜈蚣草孢子体为材料,通过比较高浓度砷、低浓度砷以及高浓度铜、低浓度铜的相互组合对孢子体毒性的差异,表明适度浓度砷可以增强蜈蚣草对铜的抗性,但高、低浓度铜都不能增强砷的抗性。同时测定了不同浓度砷、铜处理对蜈蚣草体内砷和铜的吸收分配情况,探讨了蜈蚣草对砷铜复合污染土壤的植物修复的潜在可能性 。 3、以蜈蚣草组培的配子体为材料,研究了蜈蚣草对不同浓度铜砷复合处理的生理生化响应。结果表明砷的加入可以缓解铜对蜈蚣草配子体的植物毒性,而铜的加入并没有缓解砷的植物毒性。而且随着砷浓度的提高可以显著降低铜在配子体中的积累,显著提高了配子体细胞生存能力,降低了配子体细胞膜透性,且可以改变铜砷在配子体中亚细胞定位,暗示砷对铜的积累具有拮抗作用。同时观察到适度的铜也可以降低砷在孢子体根中的积累,对砷在叶柄以及羽叶中的积累有一定的降低作用,但并不显著。 4、以蜈蚣草愈伤组织为材料,研究了蜈蚣草愈伤组织对砷和铜复合污染胁迫的生理生化响应,结果表明适度的砷可以显著提高蜈蚣草愈伤组织中抗氧化酶系统,进而提高抵御铜胁迫引起的ROS胁迫的能力而显著缓解铜对蜈蚣草愈伤组织的毒性。低浓度砷加入显著诱导POD、CAT活性的升高,提高了蜈蚣草愈伤组织抵抗ROS胁迫能力,尤其是POD与生长呈显著的正相关;SOD活性在0-1.0 mM Na3AsO4条件下并没有显著增加,暗示在相对较低的砷胁迫和铜胁迫条件下POD对蜈蚣草愈伤组织解毒起到重要作用。同时在高砷或者高铜胁迫条件下GR活性和GPx活性与之的相关系数可以达到显著水平,这说明高砷或者高铜胁迫条件下GR和GPx在蜈蚣草解毒中起到重要作用。 5、首次证明NO可能参与砷缓解铜对蜈蚣草的植物毒性的过程。发现加入0.2 μM NO加入并没有显著改善蜈蚣草砷的植物毒性,清除蜈蚣草愈伤组织内的NO后,显著增强了砷胁迫条件下对蜈蚣草愈伤组织生长的抑制作用。同时加入NO后却显著改善了蜈蚣草铜胁迫条件下愈伤组织的生长。测定了As、Cu处理后蜈蚣草愈伤组织内源NO含量的变化以及CAT抗ROS能力的变化,结果表明蜈蚣草愈伤组织NO合成显著受As诱导,但不受铜的诱导,同时内源NO浓度的升高,伴随着抵抗ROS胁迫的抗氧化的CAT活性升高。暗示砷可能是通过诱导内源NO浓度升高提高蜈蚣草愈伤组织抵抗ROS胁迫能力来缓解对铜的植物毒性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A normalized difference vegetation index (NDVI) has been produced and archived on a 1° latitude by 1° longitude grid between 55°S and 75°N. The many sources of data errors in the NDVI include cloud contamination, scan angle biases, changes in solar zenith angle, and sensor degradation. Week-to-week variability, primarily caused by cloud contamination and scan angle biases, can be minimized by temporally filtering the data. Orbital drift and sensor degradation introduces interannual variability into the dataset. These trends make the usefulness of a long-term climatology uncertain and limit the usefulness of the NDVI. Elimination of these problems should produce an index that can be used for climate monitoring.