917 resultados para constant flow rate gradient elution
Resumo:
O hidrociclone é um equipamento amplamente utilizado pela indústria em processos envolvendo separação sólido-líquido, porém ainda pouco utilizado na agricultura irrigada no Brasil. Neste trabalho, avaliou-se o desempenho deste equipamento como pré-filtrante de partículas sólidas, oriundas dos processos erosivos e do assoreamento dos recursos hídricos. Os testes foram realizados com um hidrociclone de geometria Rietema, possuindo diâmetro de 19,2 cm na parte cilíndrica, operando com vazões variando entre 10 m³ h-1 e 27 m³ h-1. Os materiais particulados usados em suspensão foram: solo franco-argiloso e areia de rio. Os resultados mostraram que a perda de carga máxima média foi de 52 kPa e 47 kPa para as suspensões aquosas de areia e solo, respectivamente. Seu melhor desempenho ocorreu operando com suspensão aquosa de areia, apresentando eficiência total de 92,3% para a vazão de 26,9 m³ h-1. Concluiu-se que o equipamento avaliado é mais eficiente para remoção de partículas de areia, podendo ser utilizado como pré-filtro em sistemas de irrigação.
Resumo:
Os objetivos deste trabalho foram quantificar as exposições dérmicas (EDs) e respiratórias (ERs) proporcionadas ao piloto e ao seu ajudante nas aplicações de herbicidas para o controle de plantas daninhas aquáticas com aerobarco; classificar essas condições de trabalho em seguras ou inseguras; e calcular a necessidade de controle das exposições (NCE) e o tempo de trabalho seguro (TTS). O aerobarco utilizado tinha casco de alumínio (4,85 x 2,42 m) e acionamento por hélice acoplada a motor a gasolina de 350 HP. O equipamento de pulverização era composto por bomba de diafragma com fluxo máximo de 49,69 L min-1, pressão máxima de 25 kg cm-2, acionada por motor a gasolina de 4 HP, e tanque de calda de 189 L. A barra de pulverização de alumínio era composta de duas seções laterais de 3 m, posicionadas na linha entre o encosto do banco do piloto e o início da estrutura protetora da hélice. Cada seção da barra tinha seis bicos com pontas de jato plano com indução de ar AI 100 03, espaçados de 0,5 m, e uma ponta OC 20 fixada em cada extremidade. O conjunto de pontas pulverizava faixas de 6 m de largura e aplicava o volume de calda de 200 L ha-1. O sistema tinha gerenciador de fluxo, controlado por central eletrônica acoplada a DGPS (com precisão submétrica), para corrigir automaticamente a vazão em função de alterações na velocidade real da embarcação. As EDs e ERs aos herbicidas foram calculadas com os dados substitutos das exposições às caldas, avaliadas com os traçadores cobre e manganês adicionados às caldas. As exposições foram extrapoladas para uma jornada de trabalho de seis horas. A segurança das condições de trabalho foi determinada com o cálculo da margem de segurança (MS), utilizando-se a fórmula MS = (NOEL x 70)/(QAE x 10), em que QAE = quantidade absorvível da exposição. As condições de trabalho foram classificadas em seguras, se MS>1, ou inseguras, se MS<1. As exposições proporcionadas pelas condições de trabalho foram de 10,65 mL de calda por dia para o piloto e de 16,80 mL por dia para o ajudante, que fica sentado em uma cadeira a 2,0 m à frente do piloto e da barra de pulverização. Classificaram-se como seguras as aplicações dos herbicidas glyphosate (Rodeo, 6 L ha-1), 2,4D (DMA 806 BR, 8 L ha-1) e fluridone (Sonar AQ, 0,4 L ha-1), para o piloto e o seu ajudante. Classificou-se como insegura a aplicação do herbicida diquat (Reward, 4,0 L ha-1) para as duas condições de trabalho, cujas necessidades de controle das exposições calculadas foram de 65% para o piloto e de 78% para o ajudante do piloto.
Resumo:
Monoculture of mind This idea, presented by Vandana Shiva, reflects the phase that we have experienced in the world: a notion of civilization that, since many decades, characterized by a technocratic big trend, has been shown as dominant and hegemonic. Based on a thinking and acting, felling and whishing standardization, this wave ends implying in what can be called of humanity‟s crisis at civilizational process. Destruction of simpler and more harmonious lifestyles with nature, human relations increasingly distant, values embrittlement, as respect, goodness and love, are some consequences of that behavioral homogenization. In the other hand, appears an archipelago of cultural and cognitive resistance against this devastating wave. Edgar Morin and Ceiça Almeida refer to this archipelago as a South Thought , what is not just a geographic question. Report, therefore, to some places, peoples, island that keep ancient costumes and knowledge, orally transmitted, for instance, from elders to younger, or vice versa, in an almost constant flow. Particular ways of experiencing the world around themselves, the men, animals, plants, rocks, or even not alive beings, masters or enchanted, spiritual guides. Next to a logic of sensitive, as Claude Levi-Strauss proposes, this reading, which is a more attentive, observer and wiser posture of surroundings, is based on touching, smelling, eating, seeing, and, I would add, felling. In light of this, I try to expatiate about certain experiences that I had the pleasure of living in some of these islands of resistance. Talks, perceptions, observations, sensations Stories, prose, poetries, music, photos, graphics Whatever could serve to portray even a bit of the reflections and forms to understand (ourselves) and produce knowledge, such as from a formation/Education to life, was well used at this ethnographic work. Space to the subjectivity and emotions I had, have, and will have a lot Everything for the dear reader may fell traveling around the world of tradition, resistance
Resumo:
Para a otimização no uso de agroquímicos, vários países têm realizado inspeções periódicas em pulverizadores agrícolas. No Brasil, o conhecimento do estado destas máquinas pode nortear pesquisas e investimentos em orientação de uso e de manutenção das mesmas. O objetivo deste trabalho foi verificar o estado de manutenção de pulverizadores em uso para a região norte do Estado do Paraná. Foram avaliados itens como: presença, estado e escala do manômetro, estado das mangueiras, estado dos antigotejadores, presença de vazamentos, estado da barra, estado dos filtros, estado das pontas de pulverização e erros na taxa de aplicação. As máquinas foram caracterizadas como aprovadas quando não havia falha em nenhum item avaliado. O fator que ocasionou o maior índice de reprova entre as máquinas foi a escala incorreta do manômetro, que reprovou 84,55% das máquinas avaliadas. Outro fator de destaque foi a taxa de aplicação incorreta em 75,5% das máquinas. do total dos 110 pulverizadores avaliados,apenas uma unidade foi aprovada.
Resumo:
The continuous gas lift method is the main artificial lifting method used in the oil industry for submarine wells, due to its robustness and the large range of flow rate that the well might operate. Nowadays, there is a huge amount of wells producing under this mechanism. This method of elevation has a slow dynamics due to the transients and a correlation between the injected gas rate and the of produced oil rate. Electronics controllers have been used to adjust many parameters of the oil wells and also to improve the efficiency of the gas lift injection system. This paper presents a intelligent control system applied to continuous gas injection in wells, based in production s rules, that has the target of keeping the wells producing during the maximum period of time, in its best operational condition, and doing automatically all necessary adjustments when occurs some disturbance in the system. The author also describes the application of the intelligent control system as a tool to control the flow pressure in the botton of the well (Pwf). In this case, the control system actuates in the surface control valve
Resumo:
The use of Progressing Cavity Pumps (PCPs) in artificial lift applications in low deep wells is becoming more common in the oil industry, mainly, due to its ability to pump heavy oils, produce oil with large concentrations of sand, besides present high efficiency when compared to other artificial lift methods. Although this system has been widely used as an oil lift method, few investigations about its hydrodynamic behavior are presented, either experimental or numeric. Therefore, in order to increase the knowledge about the BCP operational behavior, this work presents a novel computational model for the 3-D transient flow in progressing cavity pumps, which includes the relative motion between rotor and stator, using an element based finite volume method. The model developed is able to accurately predict the volumetric efficiency and viscous looses as well as to provide detailed information of pressure and velocity fields inside the pump. In order to predict PCP performance for low viscosity fluids, advanced turbulence models were used to treat, accurately, the turbulent effects on the flow, which allowed for obtaining results consistent with experimental values encountered in literature. In addition to the 3D computational model, a simplified model was developed, based on mass balance within cavities and on simplification on the momentum equations for fully developed flow along the seal region between cavities. This simplified model, based on previous approaches encountered in literature, has the ability to predict flow rate for a given differential pressure, presenting exactness and low CPU requirements, becoming an engineering tool for quick calculations and providing adequate results, almost real-time time. The results presented in this work consider a rigid stator PCP and the models developed were validated against experimental results from open literature. The results for the 3-D model showed to be sensitive to the mesh size, such that a numerical mesh refinement study is also presented. Regarding to the simplified model, some improvements were introduced in the calculation of the friction factor, allowing the application fo the model for low viscosity fluids, which was unsuccessful in models using similar approaches, presented in previous works
Resumo:
The progressing cavity pumping (PCP) is one of the most applied oil lift methods nowadays in oil extraction due to its ability to pump heavy and high gas fraction flows. The computational modeling of PCPs appears as a tool to help experiments with the pump and therefore, obtain precisely the pump operational variables, contributing to pump s project and field operation otimization in the respectively situation. A computational model for multiphase flow inside a metallic stator PCP which consider the relative motion between rotor and stator was developed in the present work. In such model, the gas-liquid bubbly flow pattern was considered, which is a very common situation in practice. The Eulerian-Eulerian approach, considering the homogeneous and inhomogeneous models, was employed and gas was treated taking into account an ideal gas state. The effects of the different gas volume fractions in pump volumetric eficiency, pressure distribution, power, slippage flow rate and volumetric flow rate were analyzed. The results shown that the developed model is capable of reproducing pump dynamic behaviour under the multiphase flow conditions early performed in experimental works
Resumo:
In the oil industry the mixture oil/water occurs in the operations of production, transportation and refining, as well as during the use of its derivatives. The amount of water produced associated with the oil varies and can reach values of 90% in volume in the case of mature phase of the production fields. The present work deals with the development of new design of the Mixer Settler based on Phase Inversion (MDIF) in a laboratory scale. We envisage this application in industrial scale so the phases of project, construction and operation are considered. The modifications most significant, in comparison with the original prototype, include the materials of construction and the substitution of the equipment used in the mixing stage of the process. It was tested the viability of substitution of the original system of mechanical mixing by a static mixer. A statistical treatment by means of an experimental design of composed central type was used in order to evaluate the behavior of the main variables of the separation process as function of the efficiency of separation for the new device. This procedure is useful to delimit an optimal region of operation with the equipment. The variables of process considered on the experimental design were: oil concentration in the feeding water (mg/L); Total volumetric flow rate (L/h); Ratio organic/water on volumetric basis (O/A). The separation efficiency is calculated by comparison of the content of oil and greases in the inlet and outlet of the equipment. For determination of TOG (Total Oil and Grease), the method used was based in the absorption of radiation in the infra-red region. The equipment used for these determinations was InfraCal® TOG/TPH Model HATR-T2 of the Wilks Enterprise, Incorporation. It´s important to stand out that this method of measure has being used by PETROBRAS S.A. Results of global efficiency of separation oil/water varied from 75.3 to 97.7% for contaminated waters containing up to 1664,1 mg/L of oil. By means of tests carried out with a real sample of contaminated water supplied by PETROBRAS we have got an effluent specified in terms of the legal standards required for discharging. Thus, the new design of equipment constitutes a real alternative for the conventional systems of treatment of produced water in the oil industry
Resumo:
The extraction with pressurized fluids has become an attractive process for the extraction of essential oils, mainly due the specific characteristics of the fluids near the critical region. This work presents results of the extraction process of the essential oil of Cymbopogon winterianus J. with CO2 under high pressures. The effect of the following variables was evaluated: solvent flow rate (from 0.37 to 1.5 g CO2/min), pressure (66.7 and 75 bar) and temperature (8, 10, 15, 20 and 25 ºC) on the extraction kinetics and the total yield of the process, as well as in the solubility and composition of the C. winterianus essential oil. The experimental apparatus consisted of an extractor of fixed bed and the dynamic method was adopted for the calculation of the oil solubility. Extractions were also accomplished by conventional techniques (steam and organic solvent extraction). The determination and identification of extract composition were done by gas chromatography coupled with a mass spectrometer (GC-MS). The extract composition varied in function of the studied operational conditions and also related to the used extraction method. The main components obtained in the CO2 extraction were elemol, geraniol, citronellol and citronellal. For the steam extraction were the citronellal, citronellol and geraniol and for the organic solvent extraction were the azulene and the hexadecane. The most yield values (2.76%) and oil solubility (2.49x10-2 g oil/ g CO2) were obtained through the CO2 extraction in the operational conditions of T = 10°C, P = 66.7 bar and solvent flow rate 0.85 g CO2/min
Resumo:
The decontamination of the materials has been subject of some studies. One of the factors that it increases the pollution is the lack of responsibility in the discarding of toxic trash, as for example the presence of PCB (Polychlorinated Biphenyls) in the environment. In the Brazilian regulations, the material contaminated with PCB in concentrations higher than 50 ppm must be stored in special places or destroyed, usually by incineration in plasma furnace with dual steps. Due to high cost of the procedure, new methodologies of PCBs removal has been studied. The objective of this study was to develop an experimental methodology and analytical methodology for quantification of removal of PCBs through out the processes of extractions using supercritical fluid and Soxhlet method, also technical efficiency of the two processes of extraction, in the treatment of contaminated materials with PCBs. The materials studied were soils and wood, both were simulated contamination with concentration of 6.000, 33.000 and 60.000 mg of PCB/ kg of materials. Soxhlet extractions were performed using 100 ml of hexane, and temperature of 180 ºC. Extractions by fluid supercritical were performed at conditions of 200 bar, 70°C, and supercritical CO2 flow-rate of 3 g/min for 1-3 hours. The extracts obtained were quantified using Gas chromatography-mass spectrometry (GC/MS). The conventional extractions were made according to factorial experimental planning technique 22, with aim of study the influence of two variables of process extraction for the Soxhlet method: contaminant concentration and extraction time for obtain a maximum removal of PCB in the materials. The extractions for Soxhlet method were efficient for extraction of PCBs in soil and wood in both solvent studied (hexane and ethanol). In the experimental extraction in soils, the better efficient of removal of PCBs using ethanol as solvent was 81.3% than 95% for the extraction using hexane as solvent, for equal time of extraction. The results of the extraction with wood showed statistically it that there is not difference between the extractions in both solvent studied. The supercritical fluid extraction in the conditions studied showed better efficiency in the extraction of PCBs in the wood matrix than in soil, for two hours extractions the obtain percentual of 43.9 ± 0.5 % for the total of PCBs extracted in the soils against 95.1 ± 0,5% for the total of PCBs extracted in the wood. The results demonstrated that the extractions were satisfactory for both technical studied
Resumo:
The oil industry, experiencing a great economic and environmental impact, has increasingly invested in researches aiming a more satisfactory treatment of its largest effluent, i.e., produced water. These are mostly discarded at sea, without reuse and after a basic treatment. Such effluent contains a range of organic compounds with high toxicity and are difficult to remove, such as polycyclic aromatic hydrocarbons, salts, heavy metals, etc.. The main objective of this work was to study the solar distillation of produced water pre-treated to remove salts and other contaminants trough of a hybrid system with a pre-heater. This developed apparatus was called solar system, which consists of a solar heater and a conventional distillation solar still. The first device consisted of a water tank, a solar flat plate collector and a thermal reservoir. The solar distillator is of simple effect, with 1m2 of flat area and 20° of inclination. This dissertation was divided in five steps: measurements in the solar system, i.e. temperatures and distillate flow rate and weather data; modeling and simulation of the system; study of vapor-liquid equilibrium of the synthetic wastewater by the aqueous solution of p-xylene; physical and chemical analyses of samples of the feed, distillate and residue, as well as climatology pertinent variables of Natal-RN. The solar system was tested separately, with the supply water, aqueous NaCl and synthetic oil produced water. Temperature measurements were taken every minute of the thermal reservoir, water tank and distillator (liquid and vapor phases). Data of solar radiation and rainfall were obtained from INPE (National Institute for Space Research). The solar pre-heater demonstrated to be effective for the liquid systems tested. The reservoir fluid had an average temperature of 58°C, which enabled the feed to be pre-heated in the distillator. The temperature profile in the solar distillator showed a similar behavior to daily solar radiation, with temperatures near 70°C. The distillation had an average yield of 2.4 L /day, i.e., an efficiency of 27.2%. Mathematical modeling aided the identification of the most important variables and parameters in the solar system. The study of the vapor-liquid equilibrium from Total Organic Carbon (TOC) analysis indicated heteroazeotropia and the vapor phase resulted more concentrated in p-xylene. The physical-chemical analysis of pH, conductivity, Total Dissolved Solids (TDS), chlorides, cations (including heavy metals) and anions, the effluent distillate showed satisfactory results, which presents a potential for reuse. The climatological study indicates the region of Natal-RN as favorable to the operation of solar systems, but the use of auxiliary heating during periods of higher rainfall and cloud cover is also recommended
Resumo:
This work depicts a study of the adsorption of carbon dioxide on zeolite 13X. The activities were divided into four stages: study batch adsorption capacity of the adsorbent with synthetic CO2 (4%), fixed bed dynamic evaluation with the commercial mixture of gases (4% CO2, 1.11% CO, 1 2% H2, 0.233% CH4, 0.1% C3, 0.0233% C4 argon as inert closing balance), fixed bed dynamic modeling and evaluation of the breakthrough curve of CO2 originated from the pyrolysis of sewage sludge. The sewage sludge and the adsorbent were characterized by analysis TG / DTA, SEM, XRF and BET. Adsorption studies were carried out under the following operating conditions: temperature 40 °C (for the pyrolysis of the sludge T = 600 °C), pressures of 0.55 to 5.05 bar (batch process), flow rate of the gaseous mixture between 50 - 72 ml/min and the adsorbent masses of 10, 15 and 20 g (fixed bed process). The time for the adsorption batch was 7 h and on the fixed bed was around 180 min. The results of this study showed that in batch adsorption process step with zeolite 13X is efficient and the mass of adsorbed CO2 increases with the increases pressure, decreases with temperature increases and rises due the increase of activation temperature adsorbent. In the batch process were evaluated the breakthrough curves, which were compared with adsorption isotherms represented by the models of Langmuir, Freündlich and Toth. All models well adjusted to the experimental points, but the Langmuir model was chosen in view of its use in the dynamic model does not have implications for adsorption (indeterminacy and larger number of parameters such as occurred with others) in solving the equation. In the fixed bed dynamic study with the synthetic gas mixture, 20 g of mass adsorbent showed the maximum adsorption percentage 46.7% at 40 °C temperature and 50 mL/min of flow rate. The model was satisfactorily fitted to the three breakthrough curves and the parameters were: axial dispersion coefficient (0.0165 dm2/min), effective diffusivity inside the particle (dm2/min 0.0884) and external transfer coefficient mass (0.45 dm/min). The breakthrough curve for CO2 in the process of pyrolysis of the sludge showed a fast saturation with traces of aerosols presents in the gas phase into the fixed bed under the reaction process
Resumo:
Studies show the great influence of free radicals and other oxidants as responsible for aging and degenerative diseases. On the other hand, the natural phenolic compounds has shown great as antioxidants to inhibit lipid peroxidation and lipoxygenase in vitro. Among these, is highlighted trans-resveratrol ( 3,5,4 `- trihydroxystilbene ) phenolic compound , characterized as a polyphenol stilbene class. The vegetables popularly known as "Azedinha" (Rumex Acetosa) has trans-resveratrol in its composition and from this, the present work aimed to study on the supercritical extraction and conventional extraction (Soxhlet and sequential) in roots of Rumex Acetosa, evaluating the efficiency of extractive processes, antioxidant activity, total phenolic content and quantification of trans-resveratrol contained in the extracts. Extractions using supercritical CO2 as solvent, addition of co-solvent (ethanol) and were conducted by the dynamic method in a fixed bed extractor. The trial met a 23 factorial design with three replications at the central point, with the variable reply process yield and concentration of trans-resveratrol and pressure as independent variables, temperature and concentration of co-solvent (% v/v). Yields ( mass of dry extract / mass of raw material used ) obtained from the supercritical extraction ranged from 0,8 to 7,63 % , and the best result was obtained at 250 bar and 90 °C using the co-solvent 15% ethanol (% v/v). The value was calculated for YCER a flow rate of 1,0 ± 0,17 g/min resulting in 0,0469 CO2 ( g solute / g solvent ). The results of the mass yield varied between conventional extractions 0,78 % ( hexane) and 9,97 % (ethanol). The statistical model generated from the data of the concentration of trans-resveratrol performed as meaningful and predictive for a 95% confidence. GC analysis on HPLC (High Performance Liquid Chromatography), transresveratrol was quantified in all extracts and concentration values ranged between 0,0033 and 0,42 ( mg / g extract) for supercritical extracts and between 0,449 and 17,046 (mg / g extract) to conventional extractions and therefore, the Soxhlet extraction with ethanol for more selective trans-resveratrol than the supercritical fluid. Evaluation of antioxidant (radical method to sequester 2,2- diphenyl-1- picryl - hydrazyl - DPPH) the supercritical extracts resulted in EC50 values (concentration effective to neutralize 50% of free radicals) of between 7,89 and 18,43 mg/mL , while resulting in a Soxhlet extraction with EC50 values in the range of 6,05 and 7,39 mg/mL. As for quantification of the phenolic compounds (Method Spectrophotometer Folin-Ciocalteau) the supercritical extracts resulted in values between 85,3 and 194,79 mg GAE / g extract, whereas values derived from the Soxhlet extract resulted in values between 178,5 and 237,8 mg GAE / g extract. The high antioxidant activity can not be attributed solely to the presence of phenolic compounds, but the presence of other antioxidants in the existing Rumex acetosa
Resumo:
The objective of this work was the development and improvement of the mathematical models based on mass and heat balances, representing the drying transient process fruit pulp in spouted bed dryer with intermittent feeding. Mass and energy balance for drying, represented by a system of differential equations, were developed in Fortran language and adapted to the condition of intermittent feeding and mass accumulation. Were used the DASSL routine (Differential Algebraic System Solver) for solving the differential equation system and used a heuristic optimization algorithm in parameter estimation, the Particle Swarm algorithm. From the experimental data food drying, the differential models were used to determine the quantity of water and the drying air temperature at the exit of a spouted bed and accumulated mass of powder in the dryer. The models were validated using the experimental data of drying whose operating conditions, air temperature, flow rate and time intermittency, varied within the limits studied. In reviewing the results predicted, it was found that these models represent the experimental data of the kinetics of production and accumulation of powder and humidity and air temperature at the outlet of the dryer
Resumo:
This work studies the development, implementation and improvement of a macroscopic model to describe the behavior of the spouted bed dryer with continuous feeding for pastes and suspensions drying. This model is based on the CST model (Freire et al., 2009) and the model of Fernandes (2005), whose theoretical foundation is based on macroscopic mass and heat balances for the three phases involved in the process: gas, liquid and solid. Because this technique is quite relevant, the studies of modeling and simulation of spouted bed drying are essential in the analysis of the process as a whole, because through them it is possible to predict and understand the behavior of the process, which contributes significantly to more efficient project and operation. The development and understanding of the phenomena involved in the drying process can be obtained by comparing the experimental data with those from computer simulations. Such knowledge is critical for choosing properly the process conditions in order to obtain a good drying efficiency. Over the past few years, researches and development of works in the field of pastes and suspensions drying in spouted bed has been gaining ground in Brazil. The Particulate Systems Laboratory at Universidade Federal do Rio Grande do Norte, has been developing several researches and generating a huge collection of experimental data concerning the drying of fruit pulps, vegetables pastes, goat milk and suspensions of agro-industrial residues. From this collection, some data of goat milk and residue from acerola (Malpighia glabra L.) drying were collected. For the first time, these data were used for the development and validation of a model that can describe the behavior of spouted bed dryer. Thus, it was possible to model the dryer and to evaluate the influence of process variables (paste feeding, temperature and flow rate of the drying air) in the drying dynamics. We also performed water evaporation experiments in order to understand and to study the behavior of the dryer wall temperature and the evaporation rate. All these analysis will contribute to future works involving the implementation of control strategies in the pastes and suspensions drying. The results obtained in transient analysis were compared with experimental data indicating that this model well represents the process