991 resultados para consensus function
Resumo:
Purpose: Posterior microphthalmos (MCOP)/nanophthalmos (NNO) is a developmental anomaly characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal recessive form (arMCOP). The gene mutated in arMCOP is not yet known.Methods: Genetic mapping by linkage analysis using microsatellite and single nucleotide polymorphisms, mutation analysis by PCR and sequencing, molecular modellingResults: Having refined the position of the disease locus (MCOP6) in an interval of 250 kb in chromosome 2q37.1 in Faroese families, we detected 3 mutations in a novel gene, LOC646960: Patients of 10 different Faroese families were either homozygous (n=22) for c.926G>C (p.Trp309Ser) or compound heterozygous (n=6) for c.926G>C and c.526C>G (p.Arg176Gly), whereas a homozygous 1 bp duplication (c.1066dupC) was identified in patients with arNNO from a Tunisian family. In two unrelated patients with MCOP, no LOC646960 mutation was found. LOC646960 is expressed in the human adult retina and RPE. The expression of the mouse homologue in the eye can be first detected at E17 and is highest in adults. The predicted protein is a 603 amino acid long secreted trypsin-like serine peptidase. c.1066dupC should result in a functional null allele. Molecular modelling of the p.Trp309Ser mutant suggests that both affinity and reactivity of the enzyme towards in vivo substrates are substantially reduced.Conclusions: Postnatal growth of the eye is important for proper development of the refractive components (emmetropization), and is mainly due to elongation of the posterior segment from 10-11 mm at birth to 15-16 mm at the age of 13 years. Optical defocus leads to changes in axial length by moving the retina towards the image plane. arMCOP may theoretically be explained, in line with the expression pattern of LOC646960, by a postnatal growth retardation of the posterior segment.
Resumo:
The purpose of this study was to investigate changes in post-exercise heart rate recovery (HRR) and heart rate variability (HRV) during an overload-tapering paradigm in marathon runners and examine their relationship with running performance. 9 male runners followed a training program composed of 3 weeks of overload followed by 3 weeks of tapering (-33±7%). Before and after overload and during tapering they performed an exhaustive running test (Tlim). At the end of this test, HRR variables (e.g. HRR during the first 60 s; HRR60 s) and vagal-related HRV indices (e.g. RMSSD5-10 min) were examined. Tlim did not change during the overload training phase (603±105 vs. 614±132 s; P=0.992), but increased (727±185 s; P=0.035) during the second week of tapering. Compared with overload, RMSSD5-10 min (7.6±3.3 vs. 8.6±2.9 ms; P=0.045) was reduced after the 2(nd) week of tapering. During tapering, the improvements in Tlim were negatively correlated with the change in HRR60 s (r=-0.84; P=0.005) but not RMSSD5-10 min (r=-0.21; P=0.59). A slower HRR during marathon tapering may be indicative of improved performance. In contrast, the monitoring of changes in HRV as measured in the present study (i.e. after exercise on a single day), may have little or no additive value.
Resumo:
Bronchiolitis obliterans (BO) following allogeneic haematopoietic stem cell transplantation (HSCT) affects peripheral airways. Detection of BO is presently delayed by the low sensitivity of spirometry. We examined the relationship between peripheral airway function and time since HSCT, and compared it with spirometry and clinical indices in 33 clinically stable allogeneic HSCT recipients. The following measurements were performed: lung function, exhaled nitric oxide, forced oscillatory respiratory system resistance and reactance, acinar (S(acin)) and conductive airways ventilation heterogeneity and lung clearance index (LCI) measured by multiple breath nitrogen washout. 22 patients underwent repeat visits from which short-term changes were examined. Median time post HSCT was 12 months. Eight patients were clinically diagnosed as having BO. In multivariate analysis, time since HSCT was predicted by S(acin) and forced expiratory volume in 1 s % predicted. 20 patients had abnormal S(acin) with normal spirometry, whereas none had airflow obstruction with normal S(acin). S(acin) and LCI were the only measures to change significantly between two visits, with both worsening. Change in S(acin) was the only parameter to correlate with change in chronic graft-versus-host disease grade. In conclusion, peripheral airways ventilation heterogeneity worsens with time after HSCT. S(acin) may be more sensitive than spirometry in detecting BO at an early stage, which needs confirmation in a prospective study.
Resumo:
BACKGROUND: Coronary endothelial function is abnormal in patients with established coronary artery disease and was recently shown by MRI to relate to the severity of luminal stenosis. Recent advances in MRI now allow the noninvasive assessment of both anatomic and functional (endothelial function) changes that previously required invasive studies. We tested the hypothesis that abnormal coronary endothelial function is related to measures of early atherosclerosis such as increased coronary wall thickness. METHODS AND RESULTS: Seventeen arteries in 14 healthy adults and 17 arteries in 14 patients with nonobstructive coronary artery disease were studied. To measure endothelial function, coronary MRI was performed before and during isometric handgrip exercise, an endothelial-dependent stressor, and changes in coronary cross-sectional area and flow were measured. Black blood imaging was performed to quantify coronary wall thickness and indices of arterial remodeling. The mean stress-induced change in cross-sectional area was significantly higher in healthy adults (13.5%±12.8%, mean±SD, n=17) than in those with mildly diseased arteries (-2.2%±6.8%, P<0.0001, n=17). Mean coronary wall thickness was lower in healthy subjects (0.9±0.2 mm) than in patients with coronary artery disease (1.4±0.3 mm, P<0.0001). In contrast to healthy subjects, stress-induced changes in cross-sectional area, a measure of coronary endothelial function, correlated inversely with coronary wall thickness in patients with coronary artery disease (r=-0.73, P=0.0008). CONCLUSIONS: There is an inverse relationship between coronary endothelial function and local coronary wall thickness in patients with coronary artery disease but not in healthy adults. These findings demonstrate that local endothelial-dependent functional changes are related to the extent of early anatomic atherosclerosis in mildly diseased arteries. This combined MRI approach enables the anatomic and functional investigation of early coronary disease.
Resumo:
The skin provides an efficient permeability barrier and protects from microbial invasion and oxidative stress. Here, we show that these essential functions are linked through the Nrf2 transcription factor. To test the hypothesis that activation of Nrf2 provides skin protection under stress conditions, we determined the consequences of pharmacological or genetic activation of Nrf2 in keratinocytes. Surprisingly, mice with enhanced Nrf2 activity in keratinocytes developed epidermal thickening, hyperkeratosis and inflammation resembling lamellar ichthyosis. This resulted from upregulation of the cornified envelope proteins small proline-rich proteins (Sprr) 2d and 2h and of secretory leukocyte peptidase inhibitor (Slpi), which we identified as novel Nrf2 targets in keratinocytes. Since Sprrs are potent scavengers of reactive oxygen species and since Slpi has antimicrobial activities, their upregulation contributes to Nrf2's protective function. However, it also caused corneocyte fragility and impaired desquamation, followed by alterations in the epidermal lipid barrier, inflammation and overexpression of mitogens that induced keratinocyte hyperproliferation. These results identify an unexpected role of Nrf2 in epidermal barrier function, which needs to be considered for pharmacological use of Nrf2 activators.
Resumo:
Road transport emissions are a major contributor to ambient particulate matter concentrations and have been associated with adverse health effects. Therefore, these emissions are targeted through increasingly stringent European emission standards. These policies succeed in reducing exhaust emissions, but do not address "nonexhaust" emissions from brake wear, tire wear, road wear, and suspension in air of road dust. Is this a problem? To what extent do nonexhaust emissions contribute to ambient concentrations of PM10 or PM2.5? In the near future, wear emissions may dominate the remaining traffic-related PM10 emissions in Europe, mostly due to the steep decrease in PM exhaust emissions. This underlines the need to determine the relevance of the wear emissions as a contribution to the existing ambient PM concentrations, and the need to assess the health risks related to wear particles, which has not yet received much attention. During a workshop in 2011, available knowledge was reported and evaluated so as to draw conclusions on the relevance of traffic-related wear emissions for air quality policy development. On the basis of available evidence, which is briefly presented in this paper, it was concluded that nonexhaust emissions and in particular suspension in air of road dust are major contributors to exceedances at street locations of the PM10 air quality standards in various European cities. Furthermore, wear-related PM emissions that contain high concentrations of metals may (despite their limited contribution to the mass of nonexhaust emissions) cause significant health risks for the population, especially those living near intensely trafficked locations. To quantify the existing health risks, targeted research is required on wear emissions, their dispersion in urban areas, population exposure, and its effects on health. Such information will be crucial for environmental policymakers as an input for discussions on the need to develop control strategies.
Resumo:
PURPOSE OF REVIEW: The discovery of a new class of intrinsically photosensitive retinal ganglion cells (ipRGCs) revealed their superior role for various nonvisual biological functions, including the pupil light reflex, and circadian photoentrainment. RECENT FINDINGS: Recent works have identified and characterized several anatomically and functionally distinct ipRGC subtypes and have added strong new evidence for the accessory role of ipRGCs in the visual system in humans. SUMMARY: This review summarizes current concepts related to ipRGC morphology, central connections and behavioural functions and highlights recent studies having clinical relevance to ipRGCs. Clinical implications of the melanopsin system are widespread, particularly as related to chronobiology.
Resumo:
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Resumo:
Summary Phosphorus is one of the major macronutrients required for plant growth and development. Plant roots acquire phosphorus as inorganic phosphate (Pi), which is further distributed to the shoot, via the transpiration stream and root pressure, where Pi is imported again into cells. PHO1 in Arabidopsis has been identified as a protein involved in the loading of Pi into the root xylem. PHO1 does not have any homology to described Pi transporters including the Pht1 family of H+/ Pi cotransporters. PHO1 bears two domains, SPX and EXS domains, previously identified in Saccharomyces cerevisiae proteins involved in Pi transport and/or sensing, or in sorting proteins to endomembranes. Phylogenetic analysis of the PHO1 gene family revealed the presence of three clusters, with PHO1 and PHO1;H1 forming one cluster. The biological significance behind this cluster was demonstrated by the complementation of the pho1 mutant with only PHO1 and PHO1;H1, of all the PHO1 family members, when expressed under the PHO1 promoter. PHO1 has been shown to be expressed mostly in the root vascular cylinder and at low level in the shoot. PHO1;H1 had a different expression pattern, being expressed in both root and shoot vascular cylinder to the same level, with the levels in leaves increasing with the leaf maturity, suggesting additional role of PHO1;H1 in the Pi mobilization in leaves. In order to further explore the role of PHO1, Pi dynamics was studied on plants expressing PHO1 at different levels compared to the wild type: PHO1 overexpressors, PHO1 underexpressors and the pho1 mutant. Overexpression of the PHO1 protein in the shoot vascular tissue was shown to lead to increased Pi efflux out of the leaf cells and Pi accumulation in the shoot xylem apoplast compared to wild type, confirming the hypothesized role of PHO1 in xylem loading with Pi. The overexpression of PHO1 in the shoot was responsible far both changed Pi dynamic and stunted growth of PHO1 overexpressors, as shown by grafting experiments between wild type and PHO1 overexpressor. We found a ca. 2 fold decrease of shoot phosphorus and a 5-10 fold decrease in vacuolar Pi content in the PHO1 underexpressors and the pho1 null mutant compared to wild type, consistent with the role of PHO1 in the transfer of Pi from the root to the shoot. Shoot Pi deficiency results in a poor growth of the pho1 mutant. Grafting experiments between pho1 and wild type confirmed that both Pi deficiency and stunt growth of the pho1 mutant were dependent on the pho1 root, further supporting the importance of PHO1 in the root xylem loading with Pi. The pho1 mutant and the PHO1 underexpressors accumulated 8-15 fold more Pi in the root relative to wild type. In contrast to the pho1 mutant, the growth of PHO1 underexpressors was not impaired by the low shoat Pi content. This finding suggests that either PHO1 protein or root Pi concentration is important in Pi signaling and development of Pi deficiency symptoms leading to reduced growth. Résumé Le phosphore est l'un des nutriments essentiels à la croissance et au développement des plantes. Les racines absorbent le phosphore sous forme de phosphate inorganique (Pi) qui est dirigé, par la transpiration et la pression de la racine, vers les feuilles où le phosphate est acquis par les cellules. La protéine PHO1 a été démontrée indispensable au chargement du Pi dans le xylème des racines d'Arabidopsis. PHO1 ne démontre pas d'homologie aux transporteurs de Pi connus, incluant la famille Pht1 de cotransporteurs H+/Pi qui ont comme fonction le transport du phosphate à l'intérieur de la cellule. PHO1 contient deux domaines, SPX et EXS, aussi présents dans des protéines de Saccharomyces cerevisiae impliquées dans le transport ou la perception du phosphate, ou dans la localisation des protéines vers différentes membranes. Le génome d'Arabidopsis contient onze gènes homologues à PHO1. Neuf de ces homologues sont répartis en trois groupes. PHO1 et PHO1;H1 forment un de ces groupes. Nos travaux ont démontré que seuls PHO1;H1 et PHO1, sous contrôle du promoteur PHO1, peuvent complémenter le mutant pho1. PHO1 est exprimé principalement dans le cylindre vasculaire de la racine et faiblement dans la partie aérienne. Le degré d'expression de PHO1;H1 est similaire dans le cylindre vasculaire de la racine et des feuilles. Ceci suggère que PHO1;H1 est aussi impliqué dans la mobilisation du Pi dans les feuilles, en plus de son rôle dans le transfert du Pi dans le xylème des racines. Afin de mieux explorer le rôle de PHO1, la dynamique du phosphate a été observée dans trois lignées de plantes transgéniques: un sur-expresseur de PHO1, un sous-expresseur de PHO1 et le mutant pho1. La sur-expression de PHO1 dans le tissue vasculaire des feuilles a provoqué l'efflux du Pi vers l'espace apoplastic du xylème, ce qui confirme le rôle de PHO1 dans le chargement du Pi dans le xylème. La sur-expressìon de PHO1 dans la rosette est responsable d'un changement de la dynamique du Pi et de la diminution de la croissance, ce qui fut démontré par une expérience de greffe de la rosette du sur-expresseur de PHO1 sur les racines du sauvage. On a observé pour le sous-expresseur de PHO1 et le mutant pho1 une diminution du phosphore d'environ 2 fais au niveau des feuilles, et une diminution de 5-10 fois du Pi dans les vacuoles des feuilles, par rapport au sauvage. Ceci confirme le rôle proposé de PHO1 dans le transfert du Pi des racines aux feuilles. La carence de Pi chez pho1 implique une diminution de la taille de la rosette. Pour expliquer ce phénotype une autre expérience de greffe démontra que la cause de ce changement provenait des racines. Ceci renforce l'hypothèse de l'importance du rôle de PHO1 dans le xylème de la racine pour le chargement du Pi. Le mutant phot et le sous-expresseur de PHO1 accumulent 8-15 fois plus de Pi dans leurs racines comparé au sauvage. Cependant, contrairement au phot mutant, le sous-expresseur de PHO1 avait une croissance comparable au sauvage malgré le niveau bas du Pi dans les feuilles. Ceci suggère que la taille de la rosette lors d'une carence en Pi chez Arabidopsis serait la conséquence d'un changement de concentration de Pi dans les racines ou d'une influence de la protéine PHO1.
Resumo:
A new strategy for incremental building of multilayer feedforward neural networks is proposed in the context of approximation of functions from R-p to R-q using noisy data. A stopping criterion based on the properties of the noise is also proposed. Experimental results for both artificial and real data are performed and two alternatives of the proposed construction strategy are compared.
Resumo:
CD4+CD25+ regulatory T cells (Tregs) play a critical role in the prevention of autoimmune diseases as well as in the induction and maintenance of dominant tolerance in transplantation models. While their suppressive function has been extensively studied in vitro, their homeostasis and mechanisms of immunoregulation still remain to be clarifi ed in vivo. Using a murine adoptive transfer and skin allograft model, we analysed the expansion, effector function and traffi cking of effector T cells in the presence or absence of donor-specifi c Tregs. Although hyporesponsive to allogeneic and polyclonal stimulation in vitro, transferred Tregs survived and expanded, in response to an allograft in vivo. When co-transferred with naive CD4+CD25- effector T cells, they specifi cally prevented donor but not 3rd party allograft rejection by inhibiting the production of effector cytokines rather than the proliferation of effector T cells in response to alloantigens. The co-transfer of donor-specifi c Tregs did not affect the homing of effector T cells towards the graft draining lymph nodes, but it markedly reduced the infi ltration of the allograft by these pathogenic cells. Furthermore, in recipients where donor-specifi c transplantation tolerance was induced, Tregs preferentially accumulated in the allograft draining lymph nodes and within the grafted skin itself. Taken together, our results suggest that the suppression of graft rejection is an active process that involves the persistent presence of Tregs at the site of antigenic challenge.
Resumo:
In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.
Resumo:
Determining the time since deposition of fingermarks may prove necessary to assess their relevance to criminal investigations. The crucial factor is the initial composition of fingermarks, because it represents the starting point of any aging model. This study mainly aimed to characterize the initial composition of fingerprints, which show a high variability between donors (inter-variability), but also to investigate the variations among fingerprints from the same donor (intra-variability). Solutions to reduce this initial variability using squalene and cholesterol as target compounds are proposed and should be further investigated. The influence of substrates was also evaluated, and the initial composition was observed to be larger on porous surface than nonporous surfaces. Preliminary aging of fingerprints over 30 days was finally studied on a porous and a nonporous substrate to evaluate the potential for dating of fingermarks. Squalene was observed to decrease in a faster rate on a nonporous substrate.
Resumo:
Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. Mammals have four Notch receptors that bind five different ligands. The function of Notch signaling during lymphopoiesis and T cell neoplasia, based on gain-of-function and conditional loss-of-function approaches for the Notch1 receptor, indicates Notch1 is essential in T cell lineage commitment. Recent studies have addressed the involvement of other Notch receptors and ligands as well as their downstream targets, demonstrating additional functions of Notch signaling in embryonic hematopoiesis, intrathymic T cell development, B cell development and peripheral T cell function.