955 resultados para conferences
Resumo:
We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times. © Owned by the authors, published by EDP Sciences, 2013.
Resumo:
The strength of glass fibre reinforced vinyl-ester laminates with multiple holes has been investigated experimentally. Different hole pattern configurations have been tested, primarily for unidirectional laminates. Unidirectional laminates have shown very low notch sensitivity and the laminate failure was governed by two competing failure modes; shear off failure and net section tensile failure.
Resumo:
The notch and strain rate sensitivity of non-crimp glass fibre/vinyl-ester laminates subjected to uniaxial tensile loads has been investigated experimentally. Two set of notch configurations were tested; one where circular holes were drilled and another where fragment simulating projectiles were fired through the plate creating a notch. Experiments were conducted for strain rates ranging from 10-4/s to 102/s using servo hydraulic machines. A significant increase in strength with increasing strain rate was observed for both notched and unnotched specimens. High speed photography revealed changes in failure mode, for certain laminate configurations, as the strain rate increased. The tested laminate configurations showed fairly small notch sensitivity for the whole range of strain rates.
Resumo:
Wydział Historyczny: Instytut Historii
A simulation-based design method to transfer surface mount RF system to flip-chip die implementation
Resumo:
The flip-chip technology is a high chip density solution to meet the demand for very large scale integration design. For wireless sensor node or some similar RF applications, due to the growing requirements for the wearable and implantable implementations, flip-chip appears to be a leading technology to realize the integration and miniaturization. In this paper, flip-chip is considered as part of the whole system to affect the RF performance. A simulation based design is presented to transfer the surface mount PCB board to the flip-chip die package for the RF applications. Models are built by Q3D Extractor to extract the equivalent circuit based on the parasitic parameters of the interconnections, for both bare die and wire-bonding technologies. All the parameters and the PCB layout and stack-up are then modeled in the essential parts' design of the flip-chip RF circuit. By implementing simulation and optimization, a flip-chip package is re-designed by the parameters given by simulation sweep. Experimental results fit the simulation well for the comparison between pre-optimization and post-optimization of the bare die package's return loss performance. This design method could generally be used to transfer any surface mount PCB to flip-chip package for the RF systems or to predict the RF specifications of a RF system using the flip-chip technology.
Resumo:
Practice Links is a free e-publication for practitioners working in Irish social services, voluntary and nongovernmental sectors. Practice Links was created to enable practitioners to keep up-to-date with new publications, electronic resources and conference opportunities. Issue 40 contains details of various international conferences and recently published research and resources designed to further professional development for social workers.
Resumo:
This thesis is focused on the investigation of magnetic materials for high-power dcdc converters in hybrid and fuel cell vehicles and the development of an optimized high-power inductor for a multi-phase converter. The thesis introduces the power system architectures for hybrid and fuel cell vehicles. The requirements for power electronic converters are established and the dc-dc converter topologies of interest are introduced. A compact and efficient inductor is critical to reduce the overall cost, weight and volume of the dc-dc converter and optimize vehicle driving range and traction power. Firstly, materials suitable for a gapped CC-core inductor are analyzed and investigated. A novel inductor-design algorithm is developed and automated in order to compare and contrast the various magnetic materials over a range of frequencies and ripple ratios. The algorithm is developed for foil-wound inductors with gapped CC-cores in the low (10 kHz) to medium (30 kHz) frequency range and investigates the materials in a natural-convection-cooled environment. The practical effects of frequency, ripple, air-gap fringing, and thermal configuration are investigated next for the iron-based amorphous metal and 6.5 % silicon steel materials. A 2.5 kW converter is built to verify the optimum material selection and thermal configuration over the frequency range and ripple ratios of interest. Inductor size can increase in both of these laminated materials due to increased airgap fringing losses. Distributing the airgap is demonstrated to reduce the inductor losses and size but has practical limitations for iron-based amorphous metal cores. The effects of the manufacturing process are shown to degrade the iron-based amorphous metal multi-cut core loss. The experimental results also suggest that gap loss is not a significant consideration in these experiments. The predicted losses by the equation developed by Reuben Lee and cited by Colonel McLyman are significantly higher than the experimental results suggest. Iron-based amorphous metal has better preformance than 6.5 % silicon steel when a single cut core and natural-convection-cooling are used. Conduction cooling, rather than natural convection, can result in the highest power density inductor. The cooling for these laminated materials is very dependent on the direction of the lamination and the component mounting. Experimental results are produced showing the effects of lamination direction on the cooling path. A significant temperature reduction is demonstrated for conduction cooling versus natural-convection cooling. Iron-based amorphous metal and 6.5% silicon steel are competitive materials when conduction cooled. A novel inductor design algorithm is developed for foil-wound inductors with gapped CC-cores for conduction cooling of core and copper. Again, conduction cooling, rather than natural convection, is shown to reduce the size and weight of the inductor. The weight of the 6.5 % silicon steel inductor is reduced by around a factor of ten compared to natural-convection cooling due to the high thermal conductivity of the material. The conduction cooling algorithm is used to develop high-power custom inductors for use in a high power multi-phase boost converter. Finally, a high power digitally-controlled multi-phase boost converter system is designed and constructed to test the high-power inductors. The performance of the inductors is compared to the predictions used in the design process and very good correlation is achieved. The thesis results have been documented at IEEE APEC, PESC and IAS conferences in 2007 and at the IEEE EPE conference in 2008.
Resumo:
Practice Links is a free e-publication for practitioners working in Irish social services, voluntary and nongovernmental sectors. Practice Links was created to enable practitioners to keep up-to-date with new publications, electronic resources and conference opportunities. Issue 55 includes listings for upcoming conferences, resources to support practice, recent policy reports, organisational profiles as well as reviews of research publications.
Resumo:
Practice Links is a free e-publication for practitioners working in Irish social services, voluntary and nongovernmental sectors. Practice Links was created to enable practitioners to keep up-to-date with new publications, electronic resources and conference opportunities. Issue 56 includes listings for upcoming conferences, resources, recent policy reports as well as reviews of publications.