995 resultados para concentration at centration at boundary
Resumo:
A bacia hidrográfica do rio São Domingos constitui uma das sub-bacias do rio Muriaé pertencente ao sistema Paraíba do Sul e, tem seus limites coincidentes com os limites do município de São José de Ubá, sendo este o segundo maior produtor de tomate do estado do Rio de Janeiro, com sua principal fonte econômica baseada na agropecuária. Este tipo de atividade resulta em utilização de produtos químicos nas lavouras e juntamente a ocupação inadequada resulta em modificação das paisagens e da mata nativa, resultando em diversos tipos de impactos no ambiente. Neste estudo foram abordados os impactos relacionados a concentração de metais e sua proveniência através das assinaturas isotópicas Pb/Pb, utilizando para tal o procedimento analítico de lixiviação dos sedimentos de corrente e abertura total de rochas para a obtenção de razões isotópicas e concentrações de metais por ICP-MS. Os resultados mostraram que as contribuições nos sedimentos de corrente se dão a partir de cinco fontes compreendidos no intervalo de assinatura isotópica 206Pb/207Pb 1,1229 e 1,1949, representadas em intervalos bem definidos. Por correlação com as respectivas concentrações se observa que, preferencialmente, existe maior influência das rochas do embasamento, seguido de atividade antrópicas como a urbanização e disposição de lixo doméstico. As maiores concentrações estão associadas ao cobre, chumbo, estrôncio, níquel e zinco. Contudo todas as concentrações de metais obtidas se encontram abaixo da legislação vigente. Desta forma a contaminação antrópica é limitada a regiões de maior densidade populacional e as influências naturais predominam na área da bacia.
Resumo:
The early stage of laminar-turbulent transition in a hypervelocity boundary layer is studied using a combination of modal linear stability analysis, transient growth analysis, and direct numerical simulation. Modal stability analysis is used to clarify the behavior of first and second mode instabilities on flat plates and sharp cones for a wide range of high enthalpy flow conditions relevant to experiments in impulse facilities. Vibrational nonequilibrium is included in this analysis, its influence on the stability properties is investigated, and simple models for predicting when it is important are described.
Transient growth analysis is used to determine the optimal initial conditions that lead to the largest possible energy amplification within the flow. Such analysis is performed for both spatially and temporally evolving disturbances. The analysis again targets flows that have large stagnation enthalpy, such as those found in shock tunnels, expansion tubes, and atmospheric flight at high Mach numbers, and clarifies the effects of Mach number and wall temperature on the amplification achieved. Direct comparisons between modal and non-modal growth are made to determine the relative importance of these mechanisms under different flow regimes.
Conventional stability analysis employs the assumption that disturbances evolve with either a fixed frequency (spatial analysis) or a fixed wavenumber (temporal analysis). Direct numerical simulations are employed to relax these assumptions and investigate the downstream propagation of wave packets that are localized in space and time, and hence contain a distribution of frequencies and wavenumbers. Such wave packets are commonly observed in experiments and hence their amplification is highly relevant to boundary layer transition prediction. It is demonstrated that such localized wave packets experience much less growth than is predicted by spatial stability analysis, and therefore it is essential that the bandwidth of localized noise sources that excite the instability be taken into account in making transition estimates. A simple model based on linear stability theory is also developed which yields comparable results with an enormous reduction in computational expense. This enables the amplification of finite-width wave packets to be taken into account in transition prediction.
Resumo:
Consider the Royden compactification R* of a Riemannian n-manifold R, Γ = R*\R its Royden boundary, Δ its harmonic boundary and the elliptic differential equation Δu = Pu, P ≥ 0 on R. A regular Borel measure mP can be constructed on Γ with support equal to the closure of ΔP = {q ϵ Δ : q has a neighborhood U in R* with UʃᴖRP ˂ ∞ }. Every enegy-finite solution to u (i.e. E(u) = D(u) + ʃRu2P ˂ ∞, where D(u) is the Dirichlet integral of u) can be represented by u(z) = ʃΓu(q)K(z,q)dmP(q) where K(z,q) is a continuous function on Rx Γ . A P~E-function is a nonnegative solution which is the infimum of a downward directed family of energy-finite solutions. A nonzero P~E-function is called P~E-minimal if it is a constant multiple of every nonzero P~E-function dominated by it. THEOREM. There exists a P~E-minimal function if and only if there exists a point in q ϵ Γ such that mP(q) > 0. THEOREM. For q ϵ ΔP , mP(q) > 0 if and only if m0(q) > 0 .
Resumo:
This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.
Resumo:
To ascertain the effect of various concentrations of oxygen in water on the fry of rainbow trout experiments were made with aquaria at various concentrations of oxygen. The food supplied was chironomid larvae (Chironomus plumosus). A surplus of food was supplied to the fry. Indices are given of the reaction of the fry to different temperatures.
Resumo:
The important features of the two-dimensional incompressible turbulent flow over a wavy surface of wavelength comparable with the boundary layer thickness are analyzed.
A turbulent field method using model equation for turbulent shear stress similar to the scheme of Bradshaw, Ferriss and Atwell (1967) is employed with suitable modification to cover the viscous sublayer. The governing differential equations are linearized based on the small but finite amplitude to wavelength ratio. An orthogonal wavy coordinate system, accurate to the second order in the amplitude ratio, is adopted to avoid the severe restriction to the validity of linearization due to the large mean velocity gradient near the wall. Analytic solution up to the second order is obtained by using the method of matched-asymptotic-expansion based on the large Reynolds number and hence the small skin friction coefficient.
In the outer part of the layer, the perturbed flow is practically "inviscid." Solutions for the velocity, Reynolds stress and also the wall pressure distributions agree well with the experimental measurement. In the wall region where the perturbed Reynolds stress plays an important role in the process of momentum transport, only a qualitative agreement is obtained. The results also show that the nonlinear second-order effect is negligible for amplitude ratio of 0.03. The discrepancies in the detailed structure of the velocity, shear stress, and skin friction distributions near the wall suggest modifications to the model are required to describe the present problem.
Resumo:
Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).
Part I
A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.
Part II
The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.
Part III
Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.
Part IV
The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.
For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.
The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.
Part V
For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.
Resumo:
I report the solubility and diffusivity of water in lunar basalt and an iron-free basaltic analogue at 1 atm and 1350 °C. Such parameters are critical for understanding the degassing histories of lunar pyroclastic glasses. Solubility experiments have been conducted over a range of fO2 conditions from three log units below to five log units above the iron-wüstite buffer (IW) and over a range of pH2/pH2O from 0.03 to 24. Quenched experimental glasses were analyzed by Fourier transform infrared spectroscopy (FTIR) and secondary ionization mass spectrometry (SIMS) and were found to contain up to ~420 ppm water. Results demonstrate that, under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is <3 ppm, even at oxygen fugacities as low as IW-2.3 and pH2/pH2O as high as 24; and (5) SIMS analyses of water in iron-rich glasses equilibrated under variable fO2 conditions can be strongly influenced by matrix effects, even when the concentrations of water in the glasses are low. Our results can be used to constrain the entrapment pressure of the lunar melt inclusions of Hauri et al. (2011).
Diffusion experiments were conducted over a range of fO2 conditions from IW-2.2 to IW+6.7 and over a range of pH2/pH2O from nominally zero to ~10. The water concentrations measured in our quenched experimental glasses by SIMS and FTIR vary from a few ppm to ~430 ppm. Water concentration gradients are well described by models in which the diffusivity of water (D*water) is assumed to be constant. The relationship between D*water and water concentration is well described by a modified speciation model (Ni et al. 2012) in which both molecular water and hydroxyl are allowed to diffuse. The success of this modified speciation model for describing our results suggests that we have resolved the diffusivity of hydroxyl in basaltic melt for the first time. Best-fit values of D*water for our experiments on lunar basalt vary within a factor of ~2 over a range of pH2/pH2O from 0.007 to 9.7, a range of fO2 from IW-2.2 to IW+4.9, and a water concentration range from ~80 ppm to ~280 ppm. The relative insensitivity of our best-fit values of D*water to variations in pH2 suggests that H2 diffusion was not significant during degassing of the lunar glasses of Saal et al. (2008). D*water during dehydration and hydration in H2/CO2 gas mixtures are approximately the same, which supports an equilibrium boundary condition for these experiments. However, dehydration experiments into CO2 and CO/CO2 gas mixtures leave some scope for the importance of kinetics during dehydration into H-free environments. The value of D*water chosen by Saal et al. (2008) for modeling the diffusive degassing of the lunar volcanic glasses is within a factor of three of our measured value in our lunar basaltic melt at 1350 °C.
In Chapter 4 of this thesis, I document significant zonation in major, minor, trace, and volatile elements in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions concurrent with diffusive propagation of the boundary layer toward the inclusion center.
Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease towards the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects.
A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150–13,000 °C hr-1 from the liquidus down to ~1000 °C, consistent with previously determined cooling rates for basaltic glasses; compositional trends with melt inclusion size observed in the Siqueiros melt inclusions are described well by this simple single-stage linear cooling model. Despite the overall success of the modeling of MgO concentration profiles using a single-stage cooling history, MgO concentration profiles in some melt inclusions are better fit by a two-stage cooling history with a slower-cooling first stage followed by a faster-cooling second stage; the inferred total duration of cooling from the liquidus down to ~1000 °C is 40 s to just over one hour.
Based on our observations and models, compositions of zoned melt inclusions (even if measured at the centers of the inclusions) will typically have been diffusively fractionated relative to the initially trapped melt; for such inclusions, the initial composition cannot be simply reconstructed based on olivine-addition calculations, so caution should be exercised in application of such reconstructions to correct for post-entrapment crystallization of olivine on inclusion walls. Off-center analyses of a melt inclusion can also give results significantly fractionated relative to simple olivine crystallization.
All melt inclusions from the Siqueiros and Galapagos sample suites exhibit zoning profiles, and this feature may be nearly universal in glassy, olivine-hosted inclusions. If so, zoning profiles in melt inclusions could be widely useful to constrain late-stage syneruptive processes and as natural diffusion experiments.
Resumo:
This thesis explores the dynamics of scale interactions in a turbulent boundary layer through a forcing-response type experimental study. An emphasis is placed on the analysis of triadic wavenumber interactions since the governing Navier-Stokes equations for the flow necessitate a direct coupling between triadically consist scales. Two sets of experiments were performed in which deterministic disturbances were introduced into the flow using a spatially-impulsive dynamic wall perturbation. Hotwire anemometry was employed to measure the downstream turbulent velocity and study the flow response to the external forcing. In the first set of experiments, which were based on a recent investigation of dynamic forcing effects in a turbulent boundary layer, a 2D (spanwise constant) spatio-temporal normal mode was excited in the flow; the streamwise length and time scales of the synthetic mode roughly correspond to the very-large-scale-motions (VLSM) found naturally in canonical flows. Correlation studies between the large- and small-scale velocity signals reveal an alteration of the natural phase relations between scales by the synthetic mode. In particular, a strong phase-locking or organizing effect is seen on directly coupled small-scales through triadic interactions. Having characterized the bulk influence of a single energetic mode on the flow dynamics, a second set of experiments aimed at isolating specific triadic interactions was performed. Two distinct 2D large-scale normal modes were excited in the flow, and the response at the corresponding sum and difference wavenumbers was isolated from the turbulent signals. Results from this experiment serve as an unique demonstration of direct non-linear interactions in a fully turbulent wall-bounded flow, and allow for examination of phase relationships involving specific interacting scales. A direct connection is also made to the Navier-Stokes resolvent operator framework developed in recent literature. Results and analysis from the present work offer insights into the dynamical structure of wall turbulence, and have interesting implications for design of practical turbulence manipulation or control strategies.