949 resultados para clinical-trials
Resumo:
Severe sepsis and septic shock are lethal complications of infection, characterised by dysregulated inflammatory and immune responses. Our understanding of the pathogenesis of sepsis has improved markedly in recent years, but unfortunately has not been translated into efficient treatment strategies. Epigenetic mechanisms such as covalent modification of histones by acetylation are master regulators of gene expression under physiological and pathological conditions, and strongly impact on inflammatory and host defence responses. Histone acetylation is controlled by histone acetyltransferases and histone deacetylases (HDACs), which affect gene expression also by targeting non-histone transcriptional regulators. Numerous HDAC inhibitors (HDACi) are being tested in clinical trials, primarily for the treatment of cancer. We performed the first comprehensive study of the impact of HDACi on innate immune responses in vitro and in vivo. We showed that HDACi act essentially as negative regulators of the expression of critical immune receptors and antimicrobial pathways in innate immune cells. In agreement, HDACi impaired phagocytosis and killing of bacteria by macrophages, and increased susceptibility to non-severe bacterial and fungal infections. Strikingly, proof-of-principle studies demonstrated that HDACi protect from lethal toxic shock and septic shock. Overall, our observations argue for a close monitoring of the immunological and infection status of patients treated with HDACi, especially immunocompromised cancer patients. They also support the concept of pharmacological inhibitors of HDACs as promising drugs to treat inflammatory diseases, including sepsis.
Resumo:
CONTEXT: Symptomatic venous thromboembolism (VTE) after total or partial knee arthroplasty (TPKA) and after total or partial hip arthroplasty (TPHA) are proposed patient safety indicators, but its incidence prior to discharge is not defined. OBJECTIVE: To establish a literature-based estimate of symptomatic VTE event rates prior to hospital discharge in patients undergoing TPHA or TPKA. DATA SOURCES: Search of MEDLINE, EMBASE, and the Cochrane Library (1996 to 2011), supplemented by relevant articles. STUDY SELECTION: Reports of incidence of symptomatic postoperative pulmonary embolism or deep vein thrombosis (DVT) before hospital discharge in patients who received VTE prophylaxis with either a low-molecular-weight heparin or a subcutaneous factor Xa inhibitor or oral direct inhibitor of factors Xa or IIa. DATA EXTRACTION AND SYNTHESIS: Meta-analysis of randomized clinical trials and observational studies that reported rates of postoperative symptomatic VTE in patients who received recommended VTE prophylaxis after undergoing TPHA or TPKA. Data were independently extracted by 2 analysts, and pooled incidence rates of VTE, DVT, and pulmonary embolism were estimated using random-effects models. RESULTS: The analysis included 44,844 cases provided by 47 studies. The pooled rates of symptomatic postoperative VTE before hospital discharge were 1.09% (95% CI, 0.85%-1.33%) for patients undergoing TPKA and 0.53% (95% CI, 0.35%-0.70%) for those undergoing TPHA. The pooled rates of symptomatic DVT were 0.63% (95% CI, 0.47%-0.78%) for knee arthroplasty and 0.26% (95% CI, 0.14%-0.37%) for hip arthroplasty. The pooled rates for pulmonary embolism were 0.27% (95% CI, 0.16%-0.38%) for knee arthroplasty and 0.14% (95% CI, 0.07%-0.21%) for hip arthroplasty. There was significant heterogeneity for the pooled incidence rates of symptomatic postoperative VTE in TPKA studies but less heterogeneity for DVT and pulmonary embolism in TPKA studies and for VTE, DVT, and pulmonary embolism in TPHA studies. CONCLUSION: Using current VTE prophylaxis, approximately 1 in 100 patients undergoing TPKA and approximately 1 in 200 patients undergoing TPHA develops symptomatic VTE prior to hospital discharge.
Resumo:
Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2 D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X-linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23-mediated hypophosphatemic disorders using NVP-BGJ398, a novel selective, pan-specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1-null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long-term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP-BGJ398 treatment as a novel approach for the therapy of FGF23-mediated hypophosphatemic diseases.
Resumo:
Blockade of the renin-angiotensin-aldosterone cascade is now recognised as a very effective approach to treat hypertensive, heart failure and high cardiovascular risk patients and to retard the development of renal failure. The purpose of this review is to discuss the state of development of currently available drugs blocking the renin-angiotensin system, such as angiotensin converting enzyme (ACE) inhibitors, renin inhibitors and angiotensin II receptor antagonists, with a special emphasis on the results of the most recent trials conducted with AT(2) receptor antagonists in heart failure and Type 2 diabetes. In addition, the future perspectives of drugs with dual mechanisms of action, such as NEP/ACE inhibitors, also named vasopeptidase inhibitors, are presented.
Resumo:
Atrial fibrillation (AF) is the most common arrhythmia and among the leading causes of stroke and heart failure in Western populations. Despite the increasing size of clinical trials assessing the efficacy and safety of AF therapies, achieved outcomes have not always matched expectations. Considering that AF is a symptom of many possible underlying diseases, clinical research for this arrhythmia should take into account their respective pathophysiology. Accordingly, the definition of the study populations to be included should rely on the established as well as on the new classifications of AF and take advantage from a differentiated look at the AF-electrocardiogram and from increasingly large spectrum of biomarkers. Such an integrated approach could bring researchers and treating physicians one step closer to the ultimate vision of personalized therapy, which, in this case, means an AF therapy based on refined diagnostic elements in accordance with scientific evidence gathered from clinical trials. By applying clear-cut patient inclusion criteria, future studies will be of smaller size and thus of lower cost. In addition, the findings from such studies will be of greater predictive value at the individual patient level, allowing for pinpointed therapeutic decisions in daily practice.
Resumo:
OBJECTIVE: A new tool to quantify visceral adipose tissue (VAT) over the android region of a total body dual-energy x-ray absorptiometry (DXA) scan has recently been reported. The measurement, CoreScan, is currently available on Lunar iDXA densitometers. The purpose of the study was to determine the precision of the CoreScan VAT measurement, which is critical for understanding the utility of this measure in longitudinal trials. DESIGN AND METHODS: VAT precision was characterized in both an anthropomorphic imaging phantom (measured on 10 Lunar iDXA systems) and a clinical population consisting of obese women (n = 32). RESULTS: The intrascanner precision for the VAT phantom across 9 quantities of VAT mass (0-1,800 g) ranged from 28.4 to 38.0 g. The interscanner precision ranged from 24.7 to 38.4 g. There was no statistical dependence on the quantity of VAT for either the inter- or intrascanner precision result (p = 0.670). Combining inter- and intrascanner precision yielded a total phantom precision estimate of 47.6 g for VAT mass, which corresponds to a 4.8% coefficient of variance (CV) for a 1 kg VAT mass. Our clinical population, who completed replicate total body scans with repositioning between scans, showed a precision of 56.8 g on an average VAT mass of 1110.4 g. This corresponds to a 5.1% CV. Hence, the in vivo precision result was similar to the phantom precision result. CONCLUSIONS: The study suggests that CoreScan has a relatively low precision error in both phantoms and obese women and therefore may be a useful addition to clinical trials where interventions are targeted towards changes in visceral adiposity.
Resumo:
Objective Investigating the educational technologies developed for promoting cardiovascular health in adults. Method Integrative review carried out in the databases of PubMed, SciELO and LILACS, with 15 articles selected. Results Over half (60%) of the studies were randomized clinical trials. The developed educational technologies were programs involving three strategies, with duration of one year, use of playful technologies with storytelling, computer programs or software for smartphones, and electronic brochure. These technologies resulted in reduction of blood pressure, weight, waist circumference, decreased hospitalizations and increased years of life. Conclusion The studies with better impact on the cardiovascular health of adults were those who brought the technology in the form of program and duration of one year.
Resumo:
Delayed cerebral vasospasm has classically been considered the most important and treatable cause of mortality and morbidity in patients with aneurysmal subarachnoid hemorrhage (aSAH). Secondary ischemia (or delayed ischemic neurological deficit, DIND) has been shown to be the leading determinant of poor clinical outcome in patients with aSAH surviving the early phase and cerebral vasospasm has been attributed to being primarily responsible. Recently, various clinical trials aimed at treating vasospasm have produced disappointing results. DIND seems to have a multifactorial etiology and vasospasm may simply represent one contributing factor and not the major determinant. Increasing evidence shows that a series of early secondary cerebral insults may occur following aneurysm rupture (the so-called early brain injury). This further aggravates the initial insult and actually determines the functional outcome. A better understanding of these mechanisms and their prevention in the very early phase is needed to improve the prognosis. The aim of this review is to summarize the existing literature on this topic and so to illustrate how the presence of cerebral vasospasm may not necessarily be a prerequisite for DIND development. The various factors determining DIND that worsen functional outcome and prognosis are then discussed.
Resumo:
Thrombolysis is the most effective treatment improving the outcome of patients suffering from acute stroke. Moreover, its effectiveness increases when administrated as quick as possible after the onset of the first symptoms. Prehospital selection of patients and their immediate transfer to stroke center are the principal factors allowing the practice of thrombolysis within the authorized time frame. On the basis of regional Swiss French data, it seems that patients evaluated by emergency physician and their direct transfer in an acute stroke unit reduces delays and allows for a higher thrombolysis rate.
Resumo:
Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.
Resumo:
Most of the novel targeted anticancer agents share classical characteristics that define drugs as candidates for blood concentration monitoring: long-term therapy; high interindividual but restricted intraindividual variability; significant drug-drug and drug- food interactions; correlations between concentration and efficacy/ toxicity with rather narrow therapeutic index; reversibility of effects; and absence of early markers of response. Surprisingly though, therapeutic concentration monitoring has received little attention for these drugs despite reiterated suggestions from clinical pharmacologists. Several issues explain the lack of clinical research and development in this field: global tradition of empiricism regarding treatment monitoring, lack of formal conceptual framework, ethical difficulties in the elaboration of controlled clinical trials, disregard from both drug manufacturers and public funders, limited encouragement from regulatory authorities, and practical hurdles making dosage adjustment based on concentration monitoring a difficult task for prescribers. However, new technologies are soon to help us overcome these obstacles, with the advent of miniaturized measurement devices able to quantify circulating drug concentrations at the point-of-care, to evaluate their plausibility given actual dosage and sampling time, to determine their appropriateness with reference to therapeutic targets, and to advise on suitable dosage adjustment. Such evolutions could bring conceptual changes into the clinical development of drugs such as anticancer agents, while increasing the therapeutic impact of population PK-PD studies and systematic reviews. Research efforts in that direction from the clinical pharmacology community will be essential for patients to receive the greatest benefits and the least harm from new anticancer treatments. The example of imatinib, the first commercialized tyrosine kinase inhibitor, will be outlined to illustrate a potential research agenda for the rational development of therapeutic concentration monitoring.
Resumo:
Purpose:Given the advances of gene therapy studies to cure RPE65-derived Leber Congenital Amaurosis (LCA) (clinical trials phase I) and the heterogeneity of the targeted patients both genetically and phenotypically, it is of prime importance to examine the rescue efficiency of gene transfer in different mutant contexts. Indeed, half of these mutations are missense mutations, leading to potential residual RPE65 activity. Consequently, we wanted to evaluate the effect on retinal activity and cone survival of lentivirus-mediated gene therapy in the R91W knock-in mouse model expressing the mutant Rpe65R91W gene (Samardzija et al. 2008), a mutation found in LCA patients. Notably we investigated whether if the therapeutic window is prolonged in comparison to null mutations. Methods:An HIV-1-derived lentiviral vector (LV) expressing either the GFP or the mouse Rpe65 cDNA under the control of a 0.8 kb fragment of the human Rpe65 promoter (R0.8) was produced by transient transfection of 293T cells. LV-R0.8-RPE65 or GFP was injected into 5-days-old (P5) or 1 month-old R91W mice. Functional rescue was assessed by ERG (1 and 4 months post-injection) and pupillary light response (PLR) recordings and cone survival by histological analysis. Results:Increased light sensitivity was detected by scotopic ERG in animals injected with LV-R0.8-RPE65 at both P5 and 1 month compared to GFP-treated animals or untreated mice. PLR was also improved in some eyes and histological analysis of cone markers showed that the density of cones reached the wild type level in the region of wt RPE65 delivery after treatment at P5. However, the rescue effect of the injection at 1 month was limited and attained 60% of the wild type level, but still more cones were observed in the treated area than in 1 month-old untreated Rpe65R91W mice. Conclusions:We were able to show that lentivirus-mediated Rpe65 gene transfer not only increases retinal activity of the Rpe65R91W mouse and survival of cones after treatment at P5 but also after treatment at 1 month. However even if the treatment at 1 month is more limited (60% of the wild type level) than treatment at P5, the amount of cone markers is increased compared to the proportion found at 1 month of age in untreated animals. This results contrast with the lack of cone rescue by treatment at 1 month of age in Rpe65-/- (Bemelmans et al, 2006). Thus patient suffering from R91W mutation might benefit from a prolonged therapeutic window.
Resumo:
Neuroblastoma (NBL) is the commonest extra-cranial solid tumor in children and the leading cause of cancer related deaths in childhood between the age of 1 to 4 years. NBL may behave in very different ways, from the less aggressive stage 4S NBL or congenital forms that may resolve without treatment in up to 90% of the children, to the high-risk disseminated stage 4 disease in older children with a cure rate of 35 to 40%. Initial staging is crucial for effective management and radiolabeled metaiodobenzylguanidine (MIBG) with iodine-123 is a powerful tool with a sensitivity around 90% and a specificity close to 100% for the diagnosis of NBL. MIBG scintigraphy is used routinely and is mandatory in most investigational clinical trials both for the initial staging of the disease, the evaluation of the response to treatment, as well as for the detection of recurrence during follow-up. With respect to outcome of children presenting disseminated stage 4 NBL, the role of post-therapeutic [(123)I]MIBG scan has been investigated by several groups but so far there is no consensus whereas a complete or very good partial response as assessed by MIBG may be of prognostic value. NBL needs a multimodality approach at diagnosis and during follow-up and MIBG scintigraphy keeps its pivotal role, in particular with respect to bone marrow involvement and/or cortical bone metastases.
Resumo:
BACKGROUND AND PURPOSE: The EORTC 22043-30041 trial investigates the role of the addition of androgen suppression to post-operative radiotherapy in patients who have undergone radical prostatectomy. As part of the quality assurance of radiotherapy (QART) a Dummy Run (DR) procedure was performed. MATERIALS AND METHOD: The protocol included detailed and published delineation guidelines. Participating institutions digitally submitted radiotherapy treatment volumes and a treatment plan for a standard clinical case. Submissions were centrally reviewed using the VODCA software platform. RESULTS: Thirty-eight submissions from thirty-one institutions were reviewed. Six were accepted without comments. Twenty-three were accepted with comments on one or more items: target volume delineation (22), OAR delineation (23), planning and dosimetry (3) or treatment verification (1). Nine submissions were rejected requiring resubmission, seven for target volume delineation reasons alone. Intervention to highlight the importance of delineation guidelines was made prior to the entry of the first patient in the trial. After this, a lower percentage of resubmissions was required. CONCLUSIONS: The EORTC 22043-30041 Dummy Run highlights the need for timely and effective QART in clinical trials. The variation in target volume and OAR definition demonstrates that clinical guidelines and radiotherapy protocols are not a substitute for QART procedures. Early intervention in response to the Dummy Run improved protocol understanding.
Resumo:
OBJECTIVE To evaluate the effectiveness of enteral nutritional therapy (ENT) in the healing process of pressure ulcers (PU) in adults and the elderly. METHOD A systematic review whose studies were identified through the databases of Cochrane, MEDLINE/PubMed, SciELO, LILACS, EMBASE, CINAHL, Web of Science, and manual searches. It included randomized clinical trials (RCTs) without delimiting the period or language of publication, which addressed adults and elderly patients with pressure ulcers in a comparative treatment of enteral nutritional therapy and placebo or between enteral nutritional therapy with different compositions and dosages. RESULTS We included ten studies that considered different interventions. It resulted in more pressure ulcers healed in the groups that received the intervention. The included studies were heterogeneous with regard to patients, the type of intervention, the sample and the follow-up period, all of which made meta-analysis impossible. CONCLUSION Although the enteral nutritional therapy demonstrates a promotion of pressure ulcer healing, sufficient evidence to confirm the hypothesis was not found.