991 resultados para cholinergic system
Resumo:
This paper estimates the benefit of a plan for information providing system on road administration by WebGIS. The system will reduce travel costs of visitors from their business establishments to a road administration section of a city office. The authors had individual interviews with the visitors at the section of the Ichikawa City Office. Annual total sum of travel costs was estimated at 37 million yen at most. This paper also proposes formulas which expect the frequency of visits or the total sum of travel costs from the spatial distribution of the business establishments without questionnaires.
Resumo:
With the introduction of Check 21 law and the development of FSTC's echeck system, there has been an increasing usage of e-cheque conversions and acceptance among retailers, banks, and consumers. However, the current e-cheque system does not address issues concerning privacy, confidentiality, and traceability. We highlight the issues concerning the current electronic cheque system and provide a solution to overcome those drawbacks.
Resumo:
An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.
Resumo:
Plasma transport in a hybrid dc vacuum arc plasma source for ion deposition and plasma immersion treatment is considered. It is found that external crossed electric and magnetic fields near the substrate can significantly reduce the relative amplitude of ion current fluctuations I-f at the substrate surface. In particular, I-f decreases with the applied magnetic field when the bias voltage exceeds 300 V, thus allowing one to reduce the deviations from the rated process parameters. This phenomenon can be attributed to an interaction between the metal-plasma jet from the arc source and the discharge plasma in the crossed fields. © 2006 American Institute of Physics.
Resumo:
The claim that restorative justice emerged in response to the failings of the traditional criminal justice system is frequently made and rarely challenged in the restorative justice literature. It is stated unproblematically, as though it is an unassailable fact rather than a powerful truth claim, thereby positioning restorative justice as a natural, progressive and superior model of justice in comparison with the traditional criminal justice system. This truth claim therefore bestows restorative justice with a legitimacy that is difficult to challenge or refute. Drawing on a Foucaultian genealogy of restorative justice, this article seeks to destabilise the truth claim that restorative justice emerged in response to the failings of the criminal justice system. While the shortcomings of the traditional criminal justice system may provide a backdrop to the emergence of restorative justice, this article argues that such a possibility makes restorative justice a possibility rather than an inevitability.
Resumo:
Introduction Intervertebral stapling is a leading method of fusionless scoliosis treatment which attempts to control growth by applying pressure to the convex side of a scoliotic curve in accordance with the Hueter-Volkmann principle. In addition to that, staples have the potential to damage surrounding bone during insertion and subsequent loading. The aim of this study was to assess the extent of bony structural damage including epiphyseal injury as a result of intervertebral stapling using an in vitro bovine model. Materials and Methods Thoracic spines from 6-8 week old calves were dissected and divided into motion segments including levels T4-T11 (n=14). Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second for 10 cycles. The segments were initially tested uninstrumented with data collected from the tenth load cycle. Next an anterolateral 4-prong Shape Memory Alloy (SMA) staple (Medtronic Sofamor Danek, USA) was inserted into each segment. Biomechanical testing was repeated as before. The staples were cut in half with a diamond saw and carefully removed. Micro-CT scans were performed and sagittal, transverse and coronal reformatted images were produced using ImageJ (NIH, USA).The specimens were divided into 3 grades (0, 1 and 2) according to the number of epiphyses damaged by the staple prongs. Results: There were 9 (65%) segments with grade 1 staple insertions and 5 (35%) segments with grade 2 insertions. There were no grade 0 staples. Grade 2 spines had a higher stiffness level than grade 1 spines, in all axes of movement, by 28% (p=0.004). This was most noted in flexion/extension with an increase of 49% (p=0.042), followed by non-significant change in lateral bending 19% (p=0.129) and axial rotation 8% (p=0.456) stiffness. The cross sectional area of bone destruction from the prongs was only 0.4% larger in the grade 2 group compared to the grade 1 group (p=0.961). Conclusion Intervertebral staples cause epiphyseal damage. There is a difference in stiffness between grade 1 and grade 2 staple insertion segments in flexion/extension only. There is no difference in the cross section of bone destruction as a result of prong insertion and segment motion.
Resumo:
This paper presents a novel three-phase to single-phase matrix converter (TSMC) based bi-directional inductive power transfer (IPT) system for vehicle-to-grid (V2G) applications. In contrast to existing techniques, the proposed technique which employs a TSMC to drive an 8th order high frequency resonant network, requires only a single-stage power conversion process to facilitate bi-directional power transfer between electric vehicles (EVs) and a three-phase utility power supply. A mathematical model is presented to demonstrate that both magnitude and direction of power flow can be controlled by regulating either relative phase angles or magnitudes of voltages generated by converters. The viability of the proposed mathematical model is verified using simulated results of a 10 kW bi-directional IPT system and the results suggest that the proposed system is efficient, reliable and is suitable for high power applications which require contactless power transfer.
Resumo:
The Australian Civil Aviation Safety Authority (CASA) currently lists more than 100 separate entities or organisations which maintain a UAS Operator Certificate (UOC) [1]. Approved operations are overwhelmingly a permutation of aerial photography, surveillance, survey or spotting and predominantly, are restricted to Visual Line of Sight (VLOS) operations, below 400 feet, and not within 3 NM of an aerodrome. However, demand is increasing for a Remote Piloted Aerial System (RPAS) regulatory regime which facilitates more expansive operations, in particular unsegregated, Beyond Visual Line of Sight (BVLOS) operations. Despite this demand, there is national and international apprehension regarding the necessary levels of airworthiness and operational regulation required to maintain safety and minimise the risk associated with unsegregated operations. Fundamental to addressing these legitimate concerns will be the mechanisms that underpin safe separation and collision avoidance. Whilst a large body of research has been dedicated to investigating on-board, Sense and Avoid (SAA) technology necessary to meet this challenge, this paper focuses on the contribution of the NAS to separation assurance, and how it will support, as well as complicate RPAS integration. The paper collates and presents key, but historically disparate, threads of Australian RPAS and NAS related information, and distils it with a filter focused on minimising RPAS collision risk. Our ongoing effort is motivated by the need to better understand the separation assurance contribution provided by the NAS layers, in the first instance, and subsequently employ this information to identify scenarios where the coincident collision risk is demonstrably low, providing legitimate substantiation for concessions on equipage and airworthiness standards.
Resumo:
Monitoring of the integrity of rolling element bearings in the traction system of high speed trains is a fundamental operation in order to avoid catastrophic failures and to implement effective condition-based maintenance strategies. Diagnostics of rolling element bearings is usually based on vibration signal analysis by means of suitable signal processing techniques. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in industrial applications, particularly in the field of rail transport, remains scarcely investigated. This paper will address the diagnostics of bearings taken from the service after a long term operation on a high speed train. These worn bearings have been installed on a test-rig, consisting of a complete full-scale traction system of a high speed train, able to reproduce the effects of wheel-track interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is also proposed.
Resumo:
Rolling element bearings are the most critical components in the traction system of high speed trains. Monitoring their integrity is a fundamental operation in order to avoid catastrophic failures and to implement effective condition based maintenance strategies. Generally, diagnostics of rolling element bearings is usually performed by analyzing vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. Several papers have been published on this subject in the last two decades, mainly devoted to the development and assessment of signal processing techniques for diagnostics. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in specific industrial applications, particularly in rail industry, remains scarcely investigated. This paper is aimed at filling this knowledge gap, by addressing the diagnostics of bearings taken from the service after a long term operation on the traction system of a high speed train. Moreover, in order to test the effectiveness of the diagnostic procedures in the environmental conditions peculiar to the rail application, a specific test-rig has been built, consisting of a complete full-scale train traction system, able to reproduce the effects of wheeltrack interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is proposed, in order to limit their number.
Resumo:
Majority of the current research on the mounting system has emphasised on the low/medium power engine, rare work has been reported for the high-speed and heavy-duty engine, the vibration characteristics of which exhibits significantly increased complexity and uncertainty. In this work, a general dynamics model was firstly established to describe the dynamic properties of a mounting system with various numbers of mounts. Then, this model was employed for the optimization of the mounting system. A modified Powell conjugate direction method was developed to improve the optimization efficiency. Basing on the optimization results obtained from the theoretical model, a mounting system was constructed for a V6 diesel engine. The experimental measurement of the vibration intensity of the mounting systems shows excellent agreement with the theoretical calculations, indicating the validity of the model. This dynamics model opens a new avenue in assessing and designing the mounting system for a high-speed and heavy-duty engine. On the other hand, the delineated dynamics model, and the optimization algorithm should find wide applications for other mounting systems, such as the power transmission system which usually has various uncertain mounts.
Resumo:
Enterprise Systems purport to bring innovation to organizations. Yet, no past studies, neither from innovation nor from ES disciplines have merged their knowledge to understand how ES could facilitate lifecycle-wide innovation. Therefore, this study forms conceptual bridge between the two disciplines. In this research, we seek to understand how ES could facilitate innovation across its lifecycle phases. We associate classifications of innovation such as radical vs. incremental, administrative vs. technical innovation with the three phases of ES lifecycle. We introduce Continuous Restrained Innovation (CRI) as a new type of innovation specific to ES, considering restraints of technology, business processes and organization. Our empirical data collection at the implementation phase, using data from both the client and implementation partner, shows preliminary evidence of CRI. In addition, we state that both parties consider the implementation of ES as a radical innovation yet, are less interest in seeking further innovations through the system.
Resumo:
Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.
Resumo:
A novel replaceable, modularized energy storage system with wireless interface is proposed for a battery operated electric vehicle (EV). The operation of the proposed system is explained and analyzed with an equivalent circuit and an averaged state-space model. A non-linear feedback linearization based controller is developed and implemented to regulate the DC link voltage by modulating the phase shift ratio. The working and control of the proposed system is verified through simulation and some preliminary results are presented.
Resumo:
Typical Inductive Power Transfer (IPT) systems employ two power conversion stages to generate a high frequency current from low frequency utility supply. This paper proposes a matrix converter based IPT system that facilitates the generation of high frequency current through a single power conversion stage. The proposed matrix converter topology transforms a 3-phase low frequency voltage system to a high frequency single phase voltage which in turn powers a series compensated IPT system. A comprehensive mathematical model is developed to investigate the behavior of the proposed IPT topology. Theoretical results are presented in comparison to simulations, which are performed in Matlab/ Simulink, to demonstrate the applicability of the proposed concept and the validity of the developed model.