892 resultados para chipless RFID tag
Resumo:
We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (1/eta)(t), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterisation of the optimal operating point.
Resumo:
Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift (MS) tracker, which gained more attention recently, is known for tracking objects in a cluttered environment and its low computational complexity. The major problem encountered in histogram-based MS is its inability to track rapidly moving objects. In order to track fast moving objects, we propose a new robust mean-shift tracker that uses both spatial similarity measure and color histogram-based similarity measure. The inability of MS tracker to handle large displacements is circumvented by the spatial similarity-based tracking module, which lacks robustness to object's appearance change. The performance of the proposed tracker is better than the individual trackers for tracking fast-moving objects with better accuracy.
Resumo:
Inadvertent failure of power transformers has serious consequences on the power system reliability, economics and the revenue accrual. Insulation is the weakest link in the power transformer prompting periodic inspection of the status of insulation at different points in time. A close Monitoring of the electrical, chemical and such other properties on insulation as are sensitive to the amount of time-dependent degradation becomes mandatory to judge the status of the equipment. Data-driven Diagnostic Testing and Condition Monitoring (DTCM) specific to power transformer is the aspect in focus. Authors develop a Monte Carlo approach for augmenting the rather scanty experimental data normally acquired using Proto-types of power transformers. Also described is a validation procedure for estimating the accuracy of the Model so developed.
Resumo:
This paper presents design of a Low power 256x72 bit TCAM in 0.13um CMOS technology. In contrast to conventional Match line (ML) sensing scheme in which equal power is consumed irrespective of match or mismatch, the ML scheme employed in this design allocates less power to match decisions involving a large number of mismatched bits. Typically, the probability of mismatch is high so this scheme results in significant CAM power reduction. We propose to use this technique along with pipelining of search operation in which the MLs are broken into several segments. Since most words fail to match in first segment, the search operation for subsequent segments is discontinued, resulting in further reduction in power consumption. The above architecture provides 70% power reduction while performing search in 3ns.
Resumo:
A construction for a family of sequences over the 8-ary AM-PSK constellation that has maximum nontrivial correlation magnitude bounded as theta(max) less than or similar to root N is presented here. The famfly is asymptotically optimal with respect to the Welch bound on maximum magnitude of correlation. The 8-ary AM-PSK constellation is a subset of the 16-QAM constellation. We also construct two families of sequences over 16-QAM with theta(max) less than or similar to root 2 root N. These families are constructed by interleaving sets of sequences. A construction for a famBy of low-correlation sequences over QAM alphabet of size 2(2m) is presented with maximum nontrivial normalized correlation parameter bounded above by less than or similar to a root N, where N is the period of the sequences in the family and where a ranges from 1.61 in the case of 16-QAM modulation to 2.76 for large m. When used in a CDMA setting, the family will permit each user to modulate the code sequence with 2m bits of data. Interestingly, the construction permits users on the reverse link of the CDMA channel to communicate using varying data rates by switching between sequence famflies; associated to different values of the parameter m. Other features of the sequence families are improved Euclidean distance between different data symbols in comparison with PSK signaling and compatibility of the QAM sequence families with sequences belonging to the large quaternary sequence families {S(p)}.
Resumo:
In document images, we often find printed lines over-lapping with hand written elements especially in case of signatures. Typical examples of such images are bank cheques and payment slips. Although the detection and removal of the horizontal lines has been addressed, the restoration of the handwritten area after removal of lines, persists to be a problem of interest. lit this paper, we propose a method for line removal and restoration of the erased areas of the handwritten elements. Subjective evaluation of the results have been conducted to analyze the effectiveness of the proposed method. The results are promising with an accuracy of 86.33%. The entire Process takes less than half a second for completion on a 2.4 GHz 512 MB RAM Pentium IV PC for a document image.
Resumo:
We are concerned with maximizing the lifetime of a data-gathering wireless sensor network consisting of set of nodes directly communicating with a base-station. We model this scenario as the m-message interactive communication between multiple correlated informants (sensor nodes) and a recipient (base-station). With this framework, we show that m-message interactive communication can indeed enhance network lifetime. Both worst-case and average-case performances are considered.
Resumo:
Use of space-frequency block coded (SFBC) OFDM signals is advantageous in high-mobility broadband wireless access, where the channel is highly time- as well as frequency-selective because of which the receiver experiences both inter-symbol interference (ISI) as well as inter-carrier interference (10). ISI occurs due to the violation of the 'quasi-static' fading assumption caused due to frequency- and/or time-selectivity of the channel. In addition, ICI occurs due to time-selectivity of the channel which results in loss of orthogonality among the subcarriers. In this paper, we are concerned with the detection of SFBC-OFDM signals on time- and frequency-selective MIMO channels. Specifically, we propose and evaluate the performance of an interference cancelling receiver for SFBC-OFDM which alleviates the effects of ISI and ICI in highly time- and frequency-selective channels.
Resumo:
We propose a new weighting function which is computationally simple and an approximation to the theoretically derived optimum weighting function shown in the literature. The proposed weighting function is perceptually motivated and provides improved vector quantization performance compared to several weighting functions proposed so far, for line spectrum frequency (LSF) parameter quantization of both clean and noisy speech data.
Resumo:
Zero entries in complex orthogonal designs (CODs) impede their practical implementation. In this paper, a method of obtaining a no zero entry (NZE) code for 2(k+1) antennas whenever a NZE code exists for 2(k) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE codes for 16 antennas. Simulation results show good performance of our new codes compared to the well known constructions for 16 and 32 antennas under peak power constraints.
Resumo:
Support Vector Machines(SVMs) are hyperplane classifiers defined in a kernel induced feature space. The data size dependent training time complexity of SVMs usually prohibits its use in applications involving more than a few thousands of data points. In this paper we propose a novel kernel based incremental data clustering approach and its use for scaling Non-linear Support Vector Machines to handle large data sets. The clustering method introduced can find cluster abstractions of the training data in a kernel induced feature space. These cluster abstractions are then used for selective sampling based training of Support Vector Machines to reduce the training time without compromising the generalization performance. Experiments done with real world datasets show that this approach gives good generalization performance at reasonable computational expense.
Resumo:
In this paper, a relative velocity approach is used to analyze the capturability of a geometric guidance law. Point mass models are assumed for both the missile and the target. The speeds of the missile and target are assumed to remain constant throughout the engagement. Lateral acceleration, obtained from the guidance law, is applied to change the path of the missile. The kinematic equations for engagements in the horizontal plane are derived in the relative velocity space. Some analytical results for the capture region are obtained for non-maneuvering and maneuvering targets. For non-maneuvering targets it is enough for the navigation gain to be a constant to intercept the target, while for maneuvering targets a time varying navigation gain is needed for interception. These results are then verified through numerical simulations.
Resumo:
We propose certain discrete parameter variants of well known simulation optimization algorithms. Two of these algorithms are based on the smoothed functional (SF) technique while two others are based on the simultaneous perturbation stochastic approximation (SPSA) method. They differ from each other in the way perturbations are obtained and also the manner in which projections and parameter updates are performed. All our algorithms use two simulations and two-timescale stochastic approximation. As an application setting, we consider the important problem of admission control of packets in communication networks under dependent service times. We consider a discrete time slotted queueing model of the system and consider two different scenarios - one where the service times have a dependence on the system state and the other where they depend on the number of arrivals in a time slot. Under our settings, the simulated objective function appears ill-behaved with multiple local minima and a unique global minimum characterized by a sharp dip in the objective function in a small region of the parameter space. We compare the performance of our algorithms on these settings and observe that the two SF algorithms show the best results overall. In fact, in many cases studied, SF algorithms converge to the global minimum.
Resumo:
Four hybrid algorithms has been developed for the solution of the unit commitment problem. They use simulated annealing as one of the constituent techniques, and produce lower cost schedules; two of them have less overhead than other soft computing techniques. They are also more robust to the choice of parameters. A special technique avoids the generating of infeasible schedules, and thus reduces computation time.
Resumo:
We propose a novel, language-neutral approach for searching online handwritten text using Frechet distance. Online handwritten data, which is available as a time series (x,y,t), is treated as representing a parameterized curve in two-dimensions and the problem of searching online handwritten text is posed as a problem of matching two curves in a two-dimensional Euclidean space. Frechet distance is a natural measure for matching curves. The main contribution of this paper is the formulation of a variant of Frechet distance that can be used for retrieving words even when only a prefix of the word is given as query. Extensive experiments on UNIPEN dataset(1) consisting of over 16,000 words written by 7 users show that our method outperforms the state-of-the-art DTW method. Experiments were also conducted on a Multilingual dataset, generated on a PDA, with encouraging results. Our approach can be used to implement useful, exciting features like auto-completion of handwriting in PDAs.