925 resultados para cell content
Resumo:
Mantle cell lymphoma (MCL) commonly involves extranodal sites, usually as a manifestation of disseminated disease. In rare cases, MCLs may arise as a primary tumor in the skin. Blastoid mantle cell lymphoma (BV-MCL) is a rare variant and has a more aggressive clinical course. The phenotype of BV-MCL is characterized as CD20(+), CD5(+), cyclin D1(+), CD23(-), and CD10(-). Interphase fluorescence in situ hybridization shows a characteristic t(11; 14) fusion pattern. We report a case of a BV-MCL arising in skin as primary cutaneous MCL with the characteristic immunophenotype and translocation.
Resumo:
BACKGROUND - Squamous cell carcinomas of the skin of the bead are better treated with Mobs micrographic surgery which has the lowest recurrence rates and allows spare normal tissue. There are some characteristics of squamous cell carcinoma that can be related to a higher number of surgical stages. OBJECTIVE - To study characteristic of head squamous cell carcinoma that predicts a higher number of Mohs surgical stages. METHODS - A retrospective analysis of 51 squamous cell carcinomas of the bead treated with Mobs surgery was performed to determine risk factors for a higher number of surgical stages. The characteristics analyzed were clinical limits, morphology, recurrence, histological differentiation and size and compared to the number of surgical stages. The analysis was performed by Fisher`s exact test and multivariate logistic regression. RESULTS - The recurrent squamous cell carcinomas showed a tendency for a higher number of stages (p=0,081). The Odds Ratio for a higher number of Mobs stages was three for inaccurate limits; although not statistically significant, it corroborates clinical and previous publication. CONCLUSION - Clinical characteristics of squamous cell carcinoma as recurrence and inaccurate limits would not predict, but could indicate tendency of a higher number of Mobs micrographic surgery stages.
Resumo:
Airway epithelium plays important roles in the pathophysiology of asthma. Creatine supplementation (Cr) was shown to increase asthma features in a murine model of allergic asthma; however, the role of the airway epithelium in this inflammatory response is not known. BALB/c mice were divided into control, creatine supplementation, ovalbumin-sensitized (OVA) and OVA plus creatine supplementation groups. OVA sensitization occurred on days 0, 14, 28 and 42, and ovalbumin challenge from days 21-53. Cr was also given on days 21-53. Total and differential cells counts in BALF were evaluated. Quantitative epithelial expression of interleukin (IL)-4, IL-5, IL-13, CCL11, CCL5, CCL2, iNOS, VCAM-1, ICAM-1, NF-kappa B, VEGF, TGF-beta, IGF-1, EGFR, TIMP-1, TIMP-2, MMP-9, MMP-12 and arginase II were performed. Cr increased the number of total cells and eosinophils in BALF, the epithelial content of goblet cells and the epithelial expression of IL-5, CCL2, iNOS, ICAM-1, NF-kappa B, TGF-beta, TIMP-1 and MMP-9 when compared to the control group (p < 0.05). Creatine supplementation also exacerbated goblet cell proliferation, and IL-5 and iNOS expression by epithelial cells compared to the OVA group (p < 0.01). Creatine up-regulates the pro-inflammatory cascade and remodelling process in this asthma model by modulating the expression of inflammatory mediators by epithelial cells.
Resumo:
We previously generated a panel of T helper cell 1 (Th1) clones specific for an encephalitogenic peptide of myelin proteolipid protein (PLP) peptide 139-151 (HSLGKWLGHPDKF) that induces experimental autoimmune encephalomyelitis (EAE) upon adoptive transfer. In spite of the differences in their T cell receptor (TCR) gene usage, all these Th1 clones required W144 as the primary and most critical TCR contact residue for the activation. In this study, we determined the TCR contact residues of a panel of Th2/Th0 clones specific for the PLP peptide 139-151 generated either by immunization with the PLP 139-151 peptide with anti-B7-1 antibody or by immunization with an altered peptide Q144. Using alanine-substituted peptide analogues of the native PLP peptide, we show that the Th2 clones have shifted their primary contact residue to the NH2-terminal end of the peptide. These Th2 cells do not show any dependence on the W144, but show a critical requirement for L141/G142 as their major TCR contact residue. Thus, in contrast with the Th1 clones that did not proliferate to A144-substituted peptide, the Th2 clones tolerated a substitution at position 144 and proliferated to A144 peptide. This alternative A144 reactive repertoire appears to have a critical role in the regulation of autoimmune response to PLP 139-151 because preimmunization with A144 to expand the L141/G142-reactive repertoire protects mice from developing EAE induced with the native PLP 139-151 peptide. These data suggest that a balance between two different T cell repertoires specific for same autoantigenic epitope can determine disease phenotype, i.e., resistance or susceptibility to an autoimmune disease.
Resumo:
This study describes a simple method for long-term establishment of human ovarian tumor lines and prediction of T-cell epitopes that could be potentially useful in the generation of tumor-specific cytotoxic T lymphocytes (CTLs), Nine ovarian tumor lines (INT.Ov) were generated from solid primary or metastatic tumors as well as from ascitic fluid, Notably all lines expressed HLA class I, intercellular adhesion molecule-1 (ICAM-1), polymorphic epithelial mucin (PEM) and cytokeratin (CK), but not HLA class II, B7.1 (CD80) or BAGE, While of the 9 lines tested 4 (INT.Ov1, 2, 5 and 6) expressed the folate receptor (FR-alpha) and 6 (INT.Ov1, 2, 5, 6, 7 and 9) expressed the epidermal growth factor receptor (EGFR); MAGE-1 and p185(HER-2/neu) were only found in 2 lines (INT.Ov1 and 2) and GAGE-1 expression in 1 line (INT.Ov2). The identification of class I MHC ligands and T-cell epitopes within protein antigens was achieved by applying several theoretical methods including: 1) similarity or homology searches to MHCPEP; 2) BIMAS and 3) artificial neural network-based predictions of proteins MACE, GAGE, EGFR, p185(HER-2/neu) and FR-alpha expressed in INT.Ov lines, Because of the high frequency of expression of some of these proteins in ovarian cancer and the ability to determine HLA binding peptides efficiently, it is expected that after appropriate screening, a large cohort of ovarian cancer patients may become candidates to receive peptide based vaccines. (C) 1997 Wiley-Liss, Inc.
Resumo:
Dendritic cells (DC) are potent APCs that enter resting tissues as precursors and, after Ag exposure, differentiate and migrate to draining lymph nodes. The phenotype of RelB knockout mice implicates this member of the NF kappa B/Rel family in DC differentiation. To further elucidate the role of RelB in DC differentiation, mRNA, intracellular protein expression, and DNA binding activity of RelB were examined in immature and differentiated human DC, as well as other PB mononuclear cell populations. RelB protein and mRNA were detected constitutively in lymphocytes and in activated monocytes, differentiated DC, and monocyte-derived DC. Immunohistochemical staining demonstrated RelB within the differentiated lymph node interdigitating DC and follicular DC, but not undifferentiated DC in normal skin. Active nuclear RelB was detected by supershift assay only in differentiated DC derived from either PB precursors or monocytes and in activated B cells. These RelB(+) APC were potent stimulators of the MLR. The data indicate that RelB expression is regulated both transcriptionally and post-translationally in myeloid cells. Within the nucleus, RelB may specifically transactivate genes that are critical for APC function.
Resumo:
We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.
Resumo:
The use of cell numbers rather than mass to quantify the size of the biotic phase in animal cell cultures causes several problems. First, the cell size varies with growth conditions, thus yields expressed in terms of cell numbers cannot be used in the normal mass balance sense. Second, experience from microbial systems shows that cell number dynamics lag behind biomass dynamics. This work demonstrates that this lag phenomenon also occurs in animal cell culture. Both the lag phenomenon and the variation in cell size are explained using a simple model of the cell cycle. The basis for the model is that onset of DNA synthesis requires accumulation of G1 cyclins to a prescribed level. This requirement is translated into a requirement for a cell to reach a critical size before commencement of DNA synthesis. A slower gl-owing cell will spend more time in G1 before reaching the critical mass. In contrast, the period between onset of DNA synthesis and mitosis, tau(B), is fixed. The two parameters in the model, the critical size and tau(B), were determined from eight steady-state measurements of mean cell size in a continuous hybridoma culture. Using these parameters, it was possible to predict with reasonable accuracy the transient behavior in a separate shift-up culture, i.e., a culture where cells were transferred from a lean environment to a rich environment. The implications for analyzing experimental data for animal cell culture are discussed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
SUBPOPULATIONS of olfactory receptor neurons, which are dispersed throughout the olfactory neuroepithelium, express specific cell surface carbohydrates and project to discrete regions of the olfactory bulb. Cell surface carbohydrates such as N-acetyl-lactosamine have been postulated to mediate sorting and selective fasciculation of discrete axon subpopulations during development of the olfactory pathway. Substrate-bound N-acetyl-lactosamine promotes neurite outgrowth by both clonal olfactory receptor neuron cell lines and olfactory receptor neurons in vitro, indicating that cell surface carbohydrates may be ligands for receptor-mediated stimulation of axon growth in vivo. In the present study, the role of transmembrane signaling in N-acetyl-lactosamine-stimulated neurite outgrowth was examined in the clonal olfactory neuron cell line 4.4.2. Substrate-bound N-acetyl-lactosamine stimulated neurite outgrowth which was specifically inhibited by antagonists to N- and L-type calcium channels and to tyrosine kinase phosphorylation. These results indicate that N-acetyl-lactosamine can evoke transmembrane receptor-mediated responses capable of influencing neurite outgrowth.
Resumo:
Recombinant Escherichia coli strains harboring the genes from Alcaligenes eutrophus for polyhydroxyalkanoate biosynthesis were constructed and compared for their ability to synthesize poly(3-hydroxybutyrate) in a defined medium with whey as the sole carbon source. The highest PHB concentration and PHB content obtained were 5.2 g/L and 81% of dry cell weight, respectively.
Resumo:
The outflow-concentration-time profiles for lignocaine (lidocaine) and its metabolites have been measured after bolus impulse administration of [C-14]lignocaine into the perfused rat liver. Livers from female Sprague-Dawley rats were perfused in a once-through fashion with red-blood-cell-free Krebs-Henseleit buffer containing 0 or 2% bovine serum albumin. Perfusate flow rates of 20 and 30 mL min(-1) were used and both normal and retrograde flow directions were employed. Significant amounts of metabolite were detected in the effluent perfusate soon after lignocaine injection. The early appearance of metabolite contributed to bimodal outflow profiles observed for total C-14 radioactivity. The lignocaine outflow profiles were well characterized by the two-compartment dispersion model, with efflux rate << influx rate. The profiles for lignocaine metabolites were also characterized in terms of a simplified two-compartment dispersion model. Lignocaine was found to be extensively metabolized under the experimental conditions with the hepatic availability ranging between 0.09 and 0.18. Generally lignocaine and metabolite availability showed no significant change with alterations in perfusate flow rate from 20 to 30 mt min(-1) or protein content from 0 to 2%. A significant increase in lignocaine availability occurred when 1200 mu M unlabelled lignocaine was added to the perfusate. Solute mean transit times generally decreased with increasing flow rate and with increasing perfusate protein content. The results confirm that lignocaine pharmacokinetics in the liver closely follow the predictions of the well-stirred model. The increase in lignocaine availability when 1200 mu M unlabelled lignocaine was added to the perfusate is consistent with saturation of the hydroxylation metabolic pathways of lignocaine metabolism.
Resumo:
Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development(1,2). Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is mutated in hereditary human esophageal malformations(3), is necessary for normal esophageal squamous development(4), promotes differentiation and proliferation of basal tracheal cells(5) and cooperates in induction of pluripotent stem cells(6-8). SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 here cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These characteristics identify SOX2 as a lineage-survival oncogene in lung and esophageal SCC.
Resumo:
Background/Aims: Acinar cell carcinomas are uncommon malignant tumors of the pancreas, accounting for 1-2% of all the cases of exocrine pancreatic tumor. Some authors have estimated acinar cell tumors to be as aggressive as ductal adenocarcinoma of the pancreas whereas other series showed acinar cell tumors to have a favorable clinical outcome. This discrepancy in prognosis may be related to the cellular components of the tumor. Methodology: With the aim to evaluate the possible relationship between the presence of neuroendocrine differentiation and behavior of these tumors, the authors reviewed all patients presenting acinar cell carcinoma of the pancreas in the last 5 years with emphasis in the immunohistochemical evaluation. Results: Four patients presented neuroendocrine differentiation on immunohistochemical evaluation and had a more benign outcome. Two patients without neuroendocrine component had a disseminated disease at presentation. This data suggests that this tumor is less aggressive than ductal adenocarcinoma and even with nodal involvement, long term survival after complete resection can be achieved. Conclusions: It is possible that the absence of neuroendocrine component may be related to a less favorable outcome and adjuvant therapy may be necessary. Due to the rarity of this pancreatic tumor, this relationship remains to be confirmed with a multicentric study including a larger number of patients.
Resumo:
Rms1 is one of the series of five ramosus loci in pea (Pisum sativum L.) in which recessive mutant alleles confer increased branching at basal and aerial vegetative nodes. Shoots of the nonallelic rms1 and rms2 mutants are phenotypically similar in most respects. However, we found an up to 40-fold difference in root-sap zeatin riboside ([9R]Z) concentration between rms1 and rms2 plants. Compared with wild-type (WT) plants, the concentration of [9R]Z in rms1 root sap was very low and the concentration in rms2 root sap was slightly elevated. To our knowledge, the rms1 mutant is therefore the second ramosus mutant (rms4 being the first) to be characterized with low root-sap [9R]Z content. Like rms2, the apical bud and upper nodes of rms1 plants contain elevated indole-3-acetic acid levels compared with WT shoots. Therefore, the rms1 mutant demonstrates that high shoot auxin levels and low root-sap cytokinin levels are not necessarily correlated with increased apical dominance in pea. A graft-transmissible basis of action has been demonstrated for both mutants from reciprocal grafts between mutant and WT plants. Branching was also largely inhibited in rms1 shoots when grafted to rms2 rootstocks, but was not inhibited in rms2 shoots grafted to rms1 rootstocks. These grafting results are discussed, along with the conclusion that hormone-like signals other than auxin and cytokinin are also involved.
Resumo:
Mobile Lipids detected using H-1-NMR in stimulated lymphocytes were correlated with cell cycle phase, expression of the interleukin-2 receptor alpha and proliferation to assess the activation status of the lymphocytes. Mobile lipid levels, IL-2R alpha expression and proliferation increased after treatment with PMA and ionomycin. PMA or ionomycin stimulation alone induced increased IL-2R alpha expressiom but not proliferation, PMA- but not ionomycin-stimulation generated mobile lipid, Treatment with anti-CD3 antibody did not increase IL-2R alpha expression or proliferation but did generate increased amounts of mobile lipid, The cell cycle status of thymocytes treated with anti-CD3, PMA or ionomycin alone indicated an. accumulation of the cells in the G(1) phase of the cell cycle, The generation of mobile lipid was abrogated in anti-CD3 antibody-stimulated thymic lymphocytes but not in splenic lymphocytes, using a phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor which blocked cells in the G(1)/S phase of the cell cycle, This suggests that the H-1-NMR-detectable mobile Lipid may be generated in anti-CD3 antibody-stimulated thymic lymphocytes by the action of PC-PLC activity via the catabolism of PC, in the absence of classical signs of activation. (C) 1997 Academic Press.