904 resultados para cell adhesion molecules


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To evaluate the cytotoxicity of dimethyl sulfoxide (DMSO) on the repair-related activity of cultured odontoblast-like MDPC-23 cells. Methods Solutions with different concentrations of DMSO (0.05, 0.1, 0.3, 0.5 and 1.0 mM), diluted in culture medium (DMEM), were placed in contact with MDPC-23 cells (5 × 104 cells/cm2) for 24 h. Eight replicates (n = 8) were prepared for each solutions for the following methods of analysis: violet crystal dye for cell adhesion (CA), quantification of total protein (TP), alizarin red for mineralization nodules formation (MN) and cell death by necrosis (flow cytometry); while twelve replicates (n = 12) were prepared for viable cell number (Trypan Blue) and cell viability (MTT assay). Data were analyzed by ANOVA and Tukey or Kruskal–Wallis and Mann–Whitney's tests (p < 0.05). Results Cell viability, adhesion and percentage of cell death by necrosis were not affected by DMSO at any concentration, with no statistical significant difference among the groups. A significant reduction in total protein production was observed for 0.5 and 1.0 mM of DMSO compared to the control while increased mineralized nodules formation was seen only for 1.0 mM DMSO. Significance: DMSO caused no or minor cytotoxic effects on the pulp tissue repair-related activity of odontoblast-like cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to review the literature on the systems used to decontaminate the implant's surface. Different instruments have been proposed, but there is no agreement in the literature about which methods would be more efficient with no damage to the implant surface. It was reported the use of plastic, carbon fiber, stainless-steel and titanium curettes and also the use of other systems such as ultrasonic points with different tips, rubber cups and air abrasion. Literature review: In most of the studies, the injury caused on the titanium surface at the time of instrumentation was examined. In others, the cell adhesion on the titanium dental implants following instrumentation of the implant surface was observed. Moreover, to enhance cleaning around implants, ultrasonic systems were recently tested. Conclusion: Metal instruments can lead to major damage to implant surface, therefore, they are not indicated for decontamination of dental implants surfaces. Furthermore, non-metallic instruments, such as plastic curettes, rubber cups, air abrasion and some ultrasonic systems seem to be better choices to remove calculus and plaque of the sub- and supra-gingival peri-implant area. It is noteworthy that more studies evaluating the effects of these systems are required to establish best practices to be used in the treatment of patients with dental implants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Inflammatory bowel disease (IBD) consists of Crohn's disease, ulcerative colitis and an unspecific IBD. The unclear etiology of IBD is a limiting factor that complicates the development of new pharmacological treatments and explains the high frequency of refractory patients to current drugs, including both conventional and biological therapies. In view of this, recent progress on the development of novel patented products to treat IBD was reviewed.Areas covered: Evaluation of the patent literature during the period 2013 - 2014 focused on chemical compounds, functional foods and biological therapy useful for the treatment of IBD.Expert opinion: Majority of the patents are not conclusive because they were based on data from unspecific methods not related to intestinal inflammation and, when related to IBD models, few biochemical and molecular evaluations that could be corroborating their use in human IBD were presented. On the other hand, methods and strategies using new formulations of conventional drugs, guanylyl cyclase C peptide agonists, compounds that influence anti-adhesion molecules, mAbs anti-type I interferons and anti-integrin, oligonucleotide antisense Smad7, growth factor neuregulin 4 and functional foods, particularly fermented wheat germ with Saccharomyces cerevisiae, are promising products for use in the very near future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biological behavior of a new bioactive material composed of calcium-deficient hydroxyapatite, octacalcium phosphate, and beta-tricalcium phosphate was investigated by in vitro indirect and direct cytotoxicity, cell adhesion and proliferation tests, and by in vivo subcutaneous and bone implantation in rats. The results of the in vitro studies showed that the material is biocompatible and no cytotoxic. Slightly poorer initial cell adhesion and lower cell proliferation than in control was observed, which were attributed to the reactivity and roughness of the material surface, In vivo results showed that the material is biodegradable and bioactive in bone tissue, but only biocompatible and partially biodegradable in soft tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the investigation of cytocompatibility was done by MTT, XTT and Trypan Blue dye technique. Cellular adhesion and proliferation were detected additionally. The evaluation of genotoxicity was realized by micronucleus assay. In vitro tests showed that the material is non-cytotoxic or genotoxic. SEM images revealed a greater number of cells attached at the BC/SF:50% scaffold surface than the pure BC one, suggesting that the presence of fibroin improved cell attachment. This could be related to the SF amino acid sequence that acts as cell receptors facilitating cell adhesion and growth. Consequently, BC/SF:50% scaffolds configured an excellent option in bioengineering depicting its potential for tissue regeneration and cultivation of cells on nanocomposites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanotubes have been subject of studies with regard to their ability to promote differentiation of several cells lines. Nanotubes have been used to increase the roughness of the implant surfaces and to improve bone tissue integration on dental implant. In this study TiO2 nanotube layer prepared by anodic oxidation was evaluated. Nanotube formation was carried out using Glycerol-H2O DI(50-50 v/v)+NH4F(0,5 a 1,5% and 10-30V) for 1-3 hours at 37ºC. After nanostructure formation the topography of surface was observed using field-emission-scanning-microscope (FE-SEM). Contact angle was evaluated on the anodized and non-anodized surfaces using a water contact angle goniometer in sessile drop mode with 5 μL drops. In the case of nanotube formation and no treatment surface were presented 39,1° and 75,9°, respectively. The contact angle describing the wettability of the surface is enhanced, more hydrophilic, on the nanotube surfaces, which can be advantageous for enhancing protein adsorption and cell adhesion.