959 resultados para catalisadores redox
Resumo:
Résumé : Les jasmonates (JA), une famille d'hor1none végétale, jouent un rôle central dans la réponse à la blessure, et aux attaques d'insectes et de pathogènes. Les JA sont principalement dérivés d'un acide gras, l'acide linolénique. L'addition par une lipoxygénase d'une molécule d'oxygène à l'acide linolénique initie la synthèse de JA. Cependant les mécanismes régulant l'activation de la biosynthèse de JA ne sont pas encore connus. C'est pour cette raison que dans ce travail, nous avons caractérisé chez Arabidopsis thaliana (l'Arabette des Dames) un mutant fou2 dont l'activité lipoxygénase est plus élevée que celle d'une plante sauvage. Les niveaux de JA sont constitutivement plus élevés et l'activation de la synthèse de JA après blessure est fortement plus induite chez fou2 que chez le type sauvage. En outre, fou2 est plus résistant au pathogène Botrytis cinerea et à la chenille Spodoptera littoralis. Afin de comprendre quel mécanisme chez fou2 génére ce phénotype, nous avons cloné le gène responsable du phénotype de fou2. Le mutant fou2 porte une mutation dans le gène d'un canal à deux pores transportant probablement du potassium, du lumen de la vacuole végétale vers le compartiment cytosolique. L'analyse du protéome de fou2 a permis d'identifier une expression plus élevée de sept protéines régulées par les JA ou le stress. La découverte de l'implication d'un canal dans le phénotype de fou2 renforce l'hypothèse que les flux de cations pourraient être impliqués dans les étapes précoces de la synthèse des JA. Nous avons également étudié le protéome et la physiologie d'une feuille blessée, Pour évaluer les changements d'expression protéique en réponse à la blessure et contrôlés par les JA, nous avons quantifié l'expression de 5937 protéines chez une plante d'Arabidopsis sauvage et chez un mutant incapable de synthétiser des JA. Parmi ces 5937 protéines, nous avons identifié 99 protéines régulées par la blessure chez le type sauvage. Nous avons observé pour 65% des protéines dont l'expression protéique changeait après blessure une bonne corrélation entre la quantité de transcrits et de protéines. Plusieurs enzymes de la voie des chorismates impliquées dans la biosynthèse des acides aminés phénoliques étaient induites par les JA après blessure. Une quantification des acides aminés a montré que les niveaux d'acides aminés phénoliques augmentaient significativement après blessure. La blessure induisait aussi des changements dans l'expression de protéines impliquées dans la réponse au stress et particulièrement au stress oxydatif. Nous avons quantifié l'état réduit et oxydé du glutathion, un tripeptide qui, sous sa forme réduite, est l'antioxydant majeur des cellules. Nous avons trouvé une quantité significativement plus élevée de glutathion oxydé chez le type sauvage blessé que chez la plante aus blessée. Ce résultat suggère que la génération d'un stress oxydatif et la proportion relative de glutathions réduits et oxydés sont contrôlés par les JA après blessure. Abstract : Plants possess a family of potent fatty acid-derived wound-response and developmental regulators: the jasmonates. These compounds are derived from the tri?unsaturated fatty acid a-linolenic-acid (18:3). Addition of an oxygen molecule to 18:3 by 13-lipoxygenases (13-LOX) initiates JA biosynthesis. Actually components regulating the activation of JA biosynthesis are poorly defined. Therefore we characterized in Arabidopsis thaliana the fatty acid Qxygenation upregulated 2 (fou2) mutant, which was previously isolated in a screen for mutants with an enhanced 13-LOX activity. As a consequence of this increased 13-LOX activity, JA levels in fou2 are higher than in wild type (WT) and wounding strongly increased JA biosynthesis compared to WT. fou2 was more resistant to the fungus Botrytis cinerea and the generalist caterpillar Spodaptera littomlis, The fou2 mutant carries a missense mutation in the Two Pore Channel 1 gene (TPCJ), which encodes a vacuolar cation channel transporting probably K* into the cytosol. Patchclamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA- inducible proteins. The discovery of the implication of a channel in the fou2 phenotype strenghtens the hypothesis that cation fluxes might be implicated in early steps of JA synthesis. We further concentrated on the proteome and leaf physiology in the region proximal to wounds in Arabidopsis using the WT and the aos JA-biosynthesis deficient mutant in order to find JA- induced proteins changes. We used two successive proteomic methods to assess protein changes in response to wounding Arabidopsis leaves, two dimensional electrophoresis (2DE) and linear trap quadrupole ion-trap mass spectrometry. In total 5937 proteins were quantified. We identified 99 wound-regulated proteins in the WT. Most these proteins were also wound-regulated at the transcript level showing a good correlation between transcript and protein abundance. We identified several wound-regulated enzymes involved in amino acid biosynthesis and confirmed this result by amino acid quantification. Proteins involved in stress reponses were upregulated, particularly in redox species regulation. We found a significantly higher quantity of oxidized glutathione in wounded WT relative to wounded aos leaves. This result suggests that levels of reduced glutathione are controlled by JA after wounding.
Resumo:
Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.
Resumo:
Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.
Resumo:
BACKGROUND: A hallmark of the pathophysiology of schizophrenia is a dysfunction of parvalbumin-expressing fast-spiking interneurons, which are essential for the coordination of neuronal synchrony during sensory and cognitive processing. Oxidative stress as observed in schizophrenia affects parvalbumin interneurons. However, it is unknown whether the deleterious effect of oxidative stress is particularly prevalent during specific developmental time windows. METHODS: We used mice with impaired synthesis of glutathione (Gclm knockout [KO] mice) to investigate the effect of redox dysregulation and additional insults applied at various periods of postnatal development on maturation and long-term integrity of parvalbumin interneurons in the anterior cingulate cortex. RESULTS: A redox dysregulation, as in Gclm KO mice, renders parvalbumin interneurons but not calbindin or calretinin interneurons vulnerable and prone to exhibit oxidative stress. A glutathione deficit delays maturation of parvalbumin interneurons, including their perineuronal net. Moreover, an additional oxidative challenge in preweaning or pubertal but not in young adult Gclm KO mice reduces the number of parvalbumin-immunoreactive interneurons. This effect persists into adulthood and can be prevented with the antioxidant N-acetylcysteine. CONCLUSIONS: In Gclm KO mice, early-life insults inducing oxidative stress are detrimental to immature parvalbumin interneurons and have long-term consequences. In analogy, individuals carrying genetic risks to redox dysregulation would be potentially vulnerable to early-life environmental insults, during the maturation of parvalbumin interneurons. Our data support the need to develop novel therapeutic approaches based on antioxidant and redox regulator compounds such as N-acetylcysteine, which could be used preventively in young at-risk subjects.
Resumo:
Grandes mudanças têm ocorrido na sociedade. Procurou-se, neste estudo, mostrar a representação das enfermeiras acercadas mudanças na Enfermagem inseridas no contexto institucional. Para tanto, foram entrevistadas dezoito enfermeirasde um hospital de ensino, público, especializado em cardiologia. Através da análise de conteúdo, conforme proposta de Bardin9, foi construído o esquema representacional que mostra o tempo do concreto e o tempo do desejo, sendo que, para se adaptar ao novo tempo existe um compasso entre os limites e os elementos catalisadores do processo de mudanças, enquanto projeto de vir a ser um novo ser profissional, para se chegar à existência auto-sustentada.
Resumo:
Wounding initiates a strong and largely jasmonate-dependent remodelling of the transcriptome in the leaf blades of Arabidopsis (Arabidopsis thaliana). How much control do jasmonates exert on wound-induced protein repatterning in leaves? Replicated shotgun proteomic analyses of 2.5-mm-wide leaf strips adjacent to wounds revealed 106 differentially regulated proteins. Many of these gene products have not emerged as being wound regulated in transcriptomic studies. From experiments using the jasmonic acid (JA)-deficient allene oxide synthase mutant we estimated that approximately 95% of wound-stimulated changes in protein levels were deregulated in the absence of JA. The levels of two tonoplast proteins already implicated in defense response regulation, TWO-PORE CHANNEL1 and the calcium-V-ATPase ACA4 increased on wounding, but their transcripts were not wound inducible. The data suggest new roles for jasmonate in controlling the levels of calcium-regulated pumps and transporters, proteins involved in targeted proteolysis, a putative bacterial virulence factor target, a light-dependent catalyst, and a key redox-controlled enzyme in glutathione synthesis. Extending the latter observation we found that wounding increased the proportion of oxidized glutathione in leaves, but only in plants able to synthesize JA. The oxidizing conditions generated through JA signaling near wounds help to define the cellular environment in which proteome remodelling occurs.
Resumo:
A hallmark of schizophrenia pathophysiology is the dysfunction of cortical inhibitory GABA neurons expressing parvalbumin, which are essential for coordinating neuronal synchrony during various sensory and cognitive tasks. The high metabolic requirements of these fast-spiking cells may render them susceptible to redox dysregulation and oxidative stress. Using mice carrying a genetic redox imbalance, we demonstrate that extracellular perineuronal nets, which constitute a specialized polyanionic matrix enwrapping most of these interneurons as they mature, play a critical role in the protection against oxidative stress. These nets limit the effect of genetically impaired antioxidant systems and/or excessive reactive oxygen species produced by severe environmental insults. We observe an inverse relationship between the robustness of the perineuronal nets around parvalbumin cells and the degree of intracellular oxidative stress they display. Enzymatic degradation of the perineuronal nets renders mature parvalbumin cells and fast rhythmic neuronal synchrony more susceptible to oxidative stress. In parallel, parvalbumin cells enwrapped with mature perineuronal nets are better protected than immature parvalbumin cells surrounded by less-condensed perineuronal nets. Although the perineuronal nets act as a protective shield, they are also themselves sensitive to excess oxidative stress. The protection might therefore reflect a balance between the oxidative burden on perineuronal net degradation and the capacity of the system to maintain the nets. Abnormal perineuronal nets, as observed in the postmortem patient brain, may thus underlie the vulnerability and functional impairment of pivotal inhibitory circuits in schizophrenia.
Resumo:
The antioxidant enzyme peroxiredoxin 6 (Prdx6) is a key regulator of the cellular redox balance, particularly under stress conditions. We identified Prdx6 as an important player in different phases of skin carcinogenesis. Loss of Prdx6 in mice enhanced the susceptibility to skin tumorigenesis, whereas overexpression of Prdx6 in keratinocytes of transgenic mice had the opposite effect. The tumor-preventive effect of Prdx6, which was observed in a human papilloma virus 8-induced and a chemically induced tumor model, was not due to alterations in keratinocyte proliferation, apoptosis, or in the inflammatory response. Rather, endogenous and overexpressed Prdx6 reduced oxidative stress as reflected by the lower levels of oxidized phospholipids in the protumorigenic skin of Prdx6 transgenic mice and the higher levels in Prdx6-knockout mice than in control animals. In contrast to its beneficial effect in tumor prevention, overexpression of Prdx6 led to an acceleration of malignant progression of existing tumors, revealing a dual function of this enzyme in the pathogenesis of skin cancer. Finally, we found strong expression of PRDX6 in keratinocytes of normal human skin and in the tumor cells of squamous cell carcinomas, indicating a role of Prdx6 in human skin carcinogenesis. Taken together, our data point to the potential usefulness of Prdx6 activators or inhibitors for controlling different stages of skin carcinogenesis.
Resumo:
Peroxiredoxins are known to interact with hydrogen peroxide (H2O2) and to participate in oxidant scavenging, redox signal transduction, and heat-shock responses. The two-cysteine peroxiredoxin Tpx1 of Schizosaccharomyces pombe has been characterized as the H2O2 sensor that transduces the redox signal to the transcription factor Pap1. Here, we show that Tpx1 is essential for aerobic, but not anaerobic, growth. We demonstrate that Tpx1 has an exquisite sensitivity for its substrate, which explains its participation in maintaining low steady-state levels of H2O2. We also show in vitro and in vivo that inactivation of Tpx1 by oxidation of its catalytic cysteine to a sulfinic acid is always preceded by a sulfinic acid form in a covalently linked dimer, which may be important for understanding the kinetics of Tpx1 inactivation. Furthermore, we provide evidence that a strain expressing Tpx1.C169S, lacking the resolving cysteine, can sustain aerobic growth, and we show that small reductants can modulate the activity of the mutant protein in vitro, probably by supplying a thiol group to substitute for cysteine 169.
Resumo:
A detailed geochemical analysis was performed on the upper part of the Maiolica Formation in the Breggia (southern Switzerland) and Capriolo sections (northern Italy). The analysed sediments consist of well-bedded, partly siliceous, pelagic carbonate, which lodges numerous thin, dark and organic-rich layers. Stable-isotope, phosphorus, organic-carbon and a suite of redox-sensitive trace-element contents (RSTE: Mo, U, Co, V and As) were measured. The RSTE pattern and C-org:P-tot ratios indicate that most organic-rich layers were deposited under dysaerobic rather than anaerobic conditions and that latter conditions were likely restricted to short intervals in the latest Hauterivian, the early Barremian and the pre-Selli early Aptian. Correlations are both possible with organic-rich intervals in central Italy (the Gorgo a Cerbara section) and the Boreal Lower Saxony Basin, as well as with the facies and drowning pattern in the Helvetic segment of the northern Tethyan carbonate platform. Our data and correlations suggest that the latest Hauterivian witnessed the progressive installation of dysaerobic conditions in the Tethys, which went along with the onset in sediment condensation, phosphogenesis and platform drowning on the northern Tethyan margin, and which culminated in the Faraoni anoxic episode. This episode is followed by further episodes of dysaerobic conditions in the Tethys and the Lower Saxony Basin, which became more frequent and progressively stronger in the late early Barremian. Platform drowning persisted and did not halt before the latest early Barremian. The late Barremian witnessed diminishing frequencies and intensities in dysaerobic conditions, which went along with the progressive installation of the Urgonian carbonate platform. Near the Barremian-Aptian boundary, the increasing density in dysaerobic episodes in the Tethyan and Lower Saxony Basins is paralleled by a change towards heterozoan carbonate production on the northern Tethyan shelf. The following return to more oxygenated conditions is correlated with the second phase of Urgonian platform growth and the period immediately preceding and corresponding to the Selli anoxic episode is characterised by renewed platform drowning and the change to heterozoan carbonate production. Changes towards more humid climate conditions were the likely cause for the repetitive installation of dys- to anaerobic conditions in the Tethyan and Boreal basins and the accompanying changes in the evolution of the carbonate platform towards heterozoan carbonate-producing ecosystems and platform drowning.
Resumo:
Redox-dysregulation represents a common pathogenic mechanism in schizophrenia (SZ) and bipolar disorder (BP). It may in part arise from a genetically compromised synthesis of glutathione (GSH), the major cellular antioxidant and redox-regulator. Allelic variants of the genes coding for the rate-limiting GSH synthesizing enzyme glutamate-cysteine-ligase modifier (GCLM) and/or catalytic (GCLC) subunit have been associated with SZ and BP. Using mice knockout (KO) for GCLM we have previously shown that impaired GSH synthesis is associated with morphological, functional and neurochemical anomalies similar to those in patients. Here we asked whether GSH deficit is also associated with SZ- and BP-relevant behavioral and cognitive anomalies. Accordingly, we subjected young adult GCLM-wildtype (WT), heterozygous and KO males to a battery of standard tests. Compared to WT, GCLM-KO mice displayed hyperlocomotion in the open field and forced swim test but normal activity in the home cage, suggesting that hyperlocomotion was selective to environmental novelty and mildly stressful situations. While spatial working memory and latent inhibition remained unaffected, KO mice showed a potentiated hyperlocomotor response to an acute amphetamine injection, impaired sensorymotor gating in the form of prepulse inhibition and altered social behavior compared to WT. These anomalies resemble important aspects of both SZ and the manic component of BP. As such our data support the notion that redox-dysregulation due to GSH deficit is implicated in both disorders. Moreover, our data propose the GCLM-KO mouse as a valuable model to study the behavioral and cognitive consequences of redox dysregulation in the context of psychiatric disease.
Resumo:
Um dos grandes desafios do nosso tempo é o aproveitamento da energia solar e outras fontes de energias renováveis para promover um desenvolvimento sustentável em grande escala. Para além da inocuidade face ao meio ambiente, a eficiência e os reduzidos custos de produção das células solares sensibilizadas por corante (DSSC, do inglês dye-sensitized solar cells) continuam a atrair considerável interesse tanto académico como comercial. Em 1991, Grätzel e O’Regan deram um enorme avanço no desenvolvimento das DSSC, utilizando um material de eléctrodo com elevada área superficial, filmes semicondutores nanocristalinos de TiO2 com espessura na ordem dos mícrons Nas células fotovoltaicas o corante sensibilizador (S) adsorvido na camada de TiO2 vai absorver a radiação solar e transfere o electrão fotoexcitado para o semicondutor (SC), formando um par de cargas separadas. O sensibilizador oxidado é regenerado pelo mediador redox existente na solução de electrólito. Uma vez efectuado o trabalho através do circuito externo, o electrão volta para o contra eléctrodo onde reduz o dador de electrão oxidado, completando o ciclo. Desta maneira, a luz é convertida em electricidade sem transformação química permanente
Resumo:
In recent years, elevated arsenic concentrations have been found in waters and soils of many, countries, often resulting in a health threat for the local population. Switzerland is not an exception and this paper deals with the release and subsequent fate of arsenic in a 200-km(2) mountainous watershed, characterized by crystalline silicate rocks (gneisses, schists, amphibolites) that contain abundant As-bearing sulfide ore deposits, some of which have been mined for iron and gold in the past. Using analytical methods common for mineralogical, ground water and soil studies (XRD, XRF, XAS-XANES and -EXAFS, electron microprobe, extraction, ICP, AAS with hydride generator, ion chromatography), seven different field situations and related dispersion processes of natural arsenic have been studied: (1) release by rock weathering, (2) transport and deposition by water and ice; (3) release of As to the ground and surface water due to increasing pH; (4) accumulation in humic soil horizons; (5) remobilization by reduction in water-saturated soils and stagnant ground waters; (6) remobilization by using P-rich fertilizers or dung and (7) oxidation, precipitation and dilution in surface waters. Comparison of the results with experimental adsorption studies and speciation diagrams from the literature allows us to reconstruct and identify the typical behavior of arsenic in a natural environment under temperate climatic conditions. The main parameters identified are: (a) once liberated from the primary minerals, sorption processes on Fe-oxy-hydroxides dominate over Al-phases, such as Al-hydroxides or clay minerals and limit the As concentrations in the spring and well waters between 20 and 300 mug/l. (b) Precipitation as secondary minerals is limited to the weathering domain, where the As concentrations are still high and not yet too diluted by rain and soils waters. (c) Although neutral and alkaline pH conditions clearly increase the mobility of As, the main factor to mobilize As is a low redox potential (Eh close or below 0 mV), which favors the dissolution of the Fe-oxy-hydroxides on which the As is sorbed. (d) X-ray absorption spectroscopy (XAS) of As in water-logged humic forest soils indicates that the reduction to As III only occurs at the solid-water interface and that the solid contains As as As V (e) A and Bh horizons of humic cambisols can effectively capture As when As-rich waters flow through them. Complex spatial and temporal variation of the various parameters in a watershed results in repeated mobilization and immobilization of As, which continuously transports As from the upper to the lower part of a watershed and ultimately to the ocean. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Evidence of altered antioxidant systems and signs of elevated oxidative stress are reported in peripheral tissue and brain of schizophrenic patients, including low levels of glutathione (GSH), a major thiol antioxidant and redox buffer. Functional and genetic data indicate that an impaired regulation of GSH synthesis is a vulnerability factor for the disease. Impaired GSH synthesis from a genetic origin combined with environmental risk factors generating oxidative stress (e.g., malnutrition, exposure to toxins, maternai infection and diabetes, obstetrical complications, and psychological stress) could lead to redox dysregulation. This could subsequently perturb normal brain development and maturation with delayed functional consequences emerging in early adulthood. Depending on the nature and the time of occurrence of the environmental insults, the structural and functional delayed consequences could vary, giving rise to various endophenotypes. The use of animal models of GSH deficit represents a valuable approach to investigate how interactions between genetic and environmental factors lead to the emergence of pathologies found in the disease. Moreover, these models of GSH can be useful to investigate links between schizophrenia and comorbid somatic disorders, as dysregulation of the GSH system and elevated oxidative stress are also found in cardiovascular diseases and diabetes. This chapter reviews pharmacological and genetic rodent models of GSH synthesis dysregulation used to address some of the aforementioned issues. Up to date, these models revealed that GSH deficits lead to morphological, physiological, and behavioral alterations that are quite analogous to pathologies observed in patients. This includes hypofunction of NMDA receptors, alteration of dopamine neurotransmission, anomalies in parvalbumin-immunoreactive fast-spiking interneurons, and reduced myelination. In addition, a GSH deficit affects the brain in a region-specific manner, the anterior cingulate cortex and the ventral hippocampus being the most vulnerable regions investigated. Interestingly, a GSH deficit during a limited period of postnatal development is sufficient to have long-lasting consequences on the integrity of PV-IR interneurons in the anterior cingulate cortex and impairs cognitive functions in adulthood. Finally, these animal models of GSH deficit display behavioral impairments that could be related to schizophrenia. Altogether, current data strongly support a contributing role of a redox dysregulation on the development of pathologies associated with the illness and demonstrate the usefulness of these models to better understand the biological mechanisms leading to schizophrenia.
Resumo:
Stable isotopes of carbonates (delta(13)C(carb), delta(18)O(carb)), organic matter (delta(13)C(org), delta(15)N(org)) and major, trace and rare earth element (REE) compositions of marine carbonate rocks of Late Permian to Early Triassic age were used to establish the position of the Permian-Triassic boundary (PTB) at two continuous sections in the Velebit Mountain, Croatia. The chosen sections - Rizvanusa and Brezimenjaca - are composed of two lithostratigraphic units, the Upper Permian Transitional Dolomite and the overlying Sandy Dolomite. The contact between these units, characterized by the erosional features and sudden occurrence of ooids and siliciclastic grains, was previously considered as the chronostratigraphic PTB. The Sandy Dolomite is characterized by high content of non-carbonate material (up to similar to 30 wt.% insoluble residue), originated from erosion of the uplifted hinterland. A relatively rich assemblage of Permian fossils (including Geinitzina, Globivalvulina, Hemigordius, bioclasts of gastropods, ostracods and brachiopods) was found for the first time in Sandy Dolomite, 5 m above the lithologic boundary in the Rizvanusa section. A rather abrupt negative delta(13)C(carb) excursion in both sections appears in rocks showing no recognizable facies change within the Sandy Dolomite, -2 parts per thousand at Rizvanusa and -1.2 parts per thousand at Brezimenjaca, 11 m and 0.2 m above the lithologic contact, respectively. This level within the lower part of the Sandy Dolomite is proposed as the chemostratigraphic PTB. In the Rizvanusa section, the delta(13)C(org) values decline gradually from similar to-25 parts per thousand in the Upper Permian to similar to-29 parts per thousand in the Lower Triassic. The first negative delta(13)C(org) excursion occurs above the lithologic contact, within the uppermost Permian deposits, and appears to be related to the input of terrigenous material. The release of isotopically light microbial soil-biomass into the shallow-marine water may explain this sudden decrease of delta(13)C(org) values below the PTB. This would support the hypothesis that in the western Tethyan realm the land extinction, triggering a sudden drop of woody vegetation and related land erosion, preceded the marine extinction. The relatively low delta(15)N(org) values at the Permian-Triassic (P-Tr) transition level, close to approximate to 0 parts per thousand, and a secondary negative delta(13)C(org) excursion of -0.5 parts per thousand point to significant terrestrial input and primary contribution of cyanobacteria. The profiles of the concentrations of redox-sensitive elements (Ce, Mn, Fe, V), biogenic or biogenic-scavenged elements (P, Ba, Zn, V), Ce/Ce* values, and normalized trace elements, including Ba/Al, Ba/Fe, Ti/Al, Al/(Al + Fe + Mn) and Mn/Ti show clear excursions at the Transitional Dolomite-Sandy Dolomite lithologic boundary and the chemostratigraphic P-Tr boundary. The stratigraphic variations indicate a major regression phase marking the lithologic boundary, transgressive phases in the latest Permian and a gradual change into shallow/stagnant anoxic marine environment towards the P-Tr boundary level and during the earliest Triassic. (C) 2010 Elsevier B.V. All rights reserved.