980 resultados para capture into 1 : 1 resonance
Resumo:
Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 18-20 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.
Resumo:
Although body ownership-i.e. the feeling that our bodies belong to us-modulates activity within the primary somatosensory cortex (S1), it is still unknown whether this modulation occurs within a somatotopically defined portion of S1. We induced an illusory feeling of ownership for another person's finger by asking participants to hold their palm against another person's palm and to stroke the two joined index fingers with the index and thumb of their other hand. This illusion (numbness illusion) does not occur if the stroking is performed asynchronously or by the other person. We combined this somatosensory paradigm with ultra-high field functional magnetic resonance imaging finger mapping to study whether illusory body ownership modulates activity within different finger-specific areas of S1. The results revealed that the numbness illusion is associated with activity in Brodmann area (BA) 1 within the representation of the finger stroking the other person's finger and in BA 2 contralateral to the stroked finger. These results show that changes in bodily experience modulate the activity within certain subregions of S1, with a different finger-topographical selectivity between the representations of the stroking and of the stroked hand, and reveal that the high degree of somatosensory specialization in S1 extends to bodily self-consciousness.
Resumo:
BACKGROUND: Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. METHODS: HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. RESULTS: All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. CONCLUSIONS: Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.
Resumo:
Idiopathic scoliosis (IS) is a three-dimensional deformity of the spine and trunk. The most common form involve ado- lescents (AIS). The prevalence for AIS is 2-3% of the population, with 1 out of 6 patients requiring treatment of which 25% progress to surgery. Physical and rehabilitation medicine (PRM) plays a primary role in the so-called conservative treatment of adolescents with AIS, since all the therapeutic tools used (exercises and braces) fall into the PRM domain. According to a Cochrane systematic review there is evidence in favor of bracing, even if it is of low quality. Another shows that there is evidence in favor of exercises as an adjunctive treatment, but of low quality. Three meta-analysis have been published on bracing: one shows that bracing does not reduce surgery rates, but studies with bracing plus exercises were not included and had the highest effectiveness; another shows that full time is better than part-time bracing; the last focuses on observational studies following the SRS criteria and shows that not all full time rigid bracing are the same: some have the highest effectiveness, others have less than elastic and nighttime bracing. Two very important RCTs failed in recruitment, showing that in the field of bracing for scoliosis RCTs are not accepted by the patients. Consensuses by the international Society on Scoliosis Orthopedic and Rehabilitation Treatment (SOSORT) show that there is no agree- ment among experts either on the best braces or on their biomechanical action, and that compliance is a matter of clinical more than patients' behavior (there is strong agreement on the management criteria to achieve best results with bracing). A systematic review of all the existing studies shows effectiveness of exercises, and that auto-correction is the main goal of exercises. A systematic review shows that there are no studies on manual treatment. Research on conservative treat- ment of AIS has continuously decreased since the 1980s, but this trend changed only recently. The SOSORT Guidelines offers the actual standard of conservative care.
Elaborated Literary Violence: Genre and Ideology of the Two Stories I Sam 22,6-23 and II Sam 21,1-14
Resumo:
The present article focuses on two stories dealing with acts of big blood shed. I Sam 22,6-23 relates the massacre of the priests of Nob; II Sam 21,1-14 is about the execution of seven descendents of Saul, as atonement for Saul's attempt to exterminate the Gibeonites. Most researchers consider both stories or at least certain parts of them old.1 For both stories few verses are regarded as secondary. In this paper I try to reassess the analysis of these stories and will point to indices favoring a late date of origin for both of them. They concern the language in use, intertextual connections and particular motifs. A further indication consists in the fact that the reported events of the stories lack significant resonance in the corpus of the Hebrew Bible. There are only two texts, I Sam 2,33 and Ps 52,2, which allude or refer to I Sam 22,6-23.With regard to the importance of the related events and acts this silence in the Biblical context is astonishing. Interestingly, also in the Book of Chronicles one does not find any allusions to these stories. This raises the question whether the latter were composed after the formation of the book of Chronicles.
Resumo:
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.
Resumo:
It is well established that cytotoxic T lymphocytes play a pivotal role in the protection against intracellular pathogens and tumour cells. Such protective immune responses rely on the specific T cell receptor (TCR)-mediated recognition by CD8 T cells of small antigenic peptides presented in the context of class-I Major Histocompatibility Complex molecules (pMHCs) on the surface of infected or malignant cells. The strength (affinity/avidity) of this interaction is a major correlate of protection. Although tumour-reactive CD8 T cells can be observed in cancer patients, anti-tumour immune responses are often ineffective in controlling or eradicating the disease due to the relative low TCR affinity of these cells. To overcome this limitation, tumour-specific CD8 T cells can be genetically modified to express TCRs of improved binding strength against a defined tumour antigen before adoptive cell transfer into cancer patients. We previously generated a panel of TCRs specific for the cancer-testis antigen NY-ESO-l,57.165 with progressively increased affinities for the pMHC complex, thus providing us with a unique tool to investigate the causal link between the surface expression of such TCRs and T cell activation and function. We recently demonstrated that anti-tumour CD8 T cell reactivity could only be improved within physiological affinity limits, beyond which drastic functional declines were observed, suggesting the presence of multiple regulatory mechanisms limiting T cell activation and function in a TCR affinity-dependent manner. The overarching goal of this thesis was (i) to assess the precise impact of TCR affinity on T cell activation and signalling at the molecular level and (ii) to gain further insights on the mechanisms that regulate and delimitate maximal/optimized CD8 T cell activation and signalling. Specifically, by combining several technical approaches we characterized the activation status of proximal (i.e. CD3Ç, Lek, and ZAP-70) and distal (i.e. ERK1/2) signalling molecules along the TCR affinity gradient. Moreover, we assessed the extent of TCR downmodulation, a critical step for initial T cell activation. CD8 T cells engineered with the optimal TCR affinity variants showed increased activation levels of both proximal and distal signalling molecules when compared to the wild-type T cells. Our analyses also highlighted the "paradoxical" status of tumour-reactive CD8 T cells bearing very high TCR affinities, which retained strong proximal signalling capacity and TCR downmodulation, but were unable to propagate signalling distally (i.e. pERKl/2), resulting in impaired cell-mediated functions. Importantly, these very high affinity T cells displayed maximal levels of SHP-1 and SHP-2 phosphatases, two negative regulatory molecules, and this correlated with a partial pERKl/2 signalling recovery upon pharmacological SHP-l/SHP-2 inhibition. These findings revealed the putative presence of inhibitory regulators of the TCR signalling cascade acting very rapidly following tumour-specific stimulation. Moreover, the very high affinity T cells were only able to transiently express enhanced proximal signalling molecules, suggesting the presence of an additional level of regulation that operates through the activation of negative feedback loops over time, limiting the duration of the TCR-mediated signalling. Overall, the determination of TCR-pMHC binding parameters eliciting optimal CD8 T cell activation, signalling, and effector function while guaranteeing high antigen specificity, together with the identification of critical regulatory mechanisms acting proximally in the TCR signalling cascade, will directly contribute to optimize and support the development of future TCR-based adoptive T cell strategies for the treatment of malignant diseases. -- Les lymphocytes T CD8 cytotoxiques jouent un rôle prédominant dans la protection contre les pathogènes intracellulaires et les cellules tumorales. Ces réponses immunitaires dépendent de la spécificité avec laquelle les récepteurs T (TCR) des lymphocytes CD8 reconnaissent les peptides antigéniques présentés par les molécules du complexe Majeur de Histocompatibilité de classe I (pCMH) à la surface des cellules infectées ou malignes. La force (ou affinité/avidité) de l'interaction du TCR-pCMH est un corrélat majeur de protection. Les réponses immunitaires sont cependant souvent inefficaces et ne permettent pas de contrôler ou d'éliminer les cellules tumorales chez les patients atteint du cancer, et ce à cause de la relative faible reconnaissance des TCRs exprimés par les lymphocytes T CD8 envers les antigènes tumoraux. Afin de surmonter cette limitation, les cellules T anti-tumorales peuvent être génétiquement modifiées en les dotant de TCRs préalablement optimisés afin d'augmenter leur reconnaissance ou affinité contre les antigènes tumoraux, avant leur ré¬infusion dans le patient. Nous avons récemment généré des cellules T CD8 exprimant un panel de TCRs spécifiques pour l'antigène tumoral NY-ESO-l157.16J avec des affinités croissantes, permettant ainsi d'investiguer la causalité directe entre l'affinité du TCR-pCMH et la fonction des cellules T CD8. Nous avons démontré que la réactivité anti-tumorale pouvait être améliorée en augmentant l'affinité du TCR dans une intervalle physiologique, mais au delà duquel nous observons un important déclin fonctionnel. Ces résultats suggèrent la présence de mécanismes de régulation limitant l'activation des cellules T de manière dépendante de l'affinité du TCR. Le but de cette thèse a été (i) de définir l'impact précis de l'affinité du TCR sur l'activation et la signalisation des cellules T CD8 au niveau moléculaire et (ii) d'acquérir de nouvelles connaissances sur les mécanismes qui régulent et délimitent l'activation et la signalisation maximale des cellules T CD8 optimisées. Spécifiquement, en combinant plusieurs approches technologiques, nous avons caractérisé l'état d'activation de différentes protéines de la voie de signalisation proximale (CD3Ç, Lek et ZAP-70) et distale (ERK1/2) le long du gradient d'affinité du TCR, ainsi que l'internalisation du TCR, une étape clef dans l'activation initiale des cellules T. Les lymphocytes T CD8 exprimant des TCRs d'affinité optimale ont montré des niveaux d'activation augmentés des molécules proximales et distales par rapport aux cellules de type sauvage (wild-type). Nos analyses ont également mis en évidence un paradoxe chez les cellules T CD8 équipées avec des TCRs de très haute affinité. En effet, ces cellules anti-tumorales sont capables d'activer leurs circuits biochimiques au niveau proximal et d'internaliser efficacement leur TCR, mais ne parviennent pas à propager les signaux biochimiques dépendants du TCR jusqu'au niveau distal (via phospho-ERKl/2), avec pour conséquence une limitation de leur capacité fonctionnelle. Finalement, nous avons démontré que SHP-1 et SHP-2, deux phosphatases avec des propriétés régulatrices négatives, étaient majoritairement exprimées dans les cellules T CD8 de très hautes affinités. Une récupération partielle des niveaux d'activation de ERK1/2 a pu être observée après l'inhibition pharmacologique de ces phosphatases. Ces découvertes révèlent la présence de régulateurs moléculaires qui inhibent le complexe de signalisation du TCR très rapidement après la stimulation anti-tumorale. De plus, les cellules T de très hautes affinités ne sont capables d'activer les molécules de la cascade de signalisation proximale que de manière transitoire, suggérant ainsi un second niveau de régulation via l'activation de mécanismes de rétroaction prenant place progressivement au cours du temps et limitant la durée de la signalisation dépendante du TCR. En résumé, la détermination des paramètres impliqués dans l'interaction du TCR-pCMH permettant l'activation de voies de signalisation et des fonctions effectrices optimales ainsi que l'identification des mécanismes de régulation au niveau proximal de la cascade de signalisation du TCR contribuent directement à l'optimisation et au développement de stratégies anti-tumorales basées sur l'ingénierie des TCRs pour le traitement des maladies malignes.
Resumo:
The World Health Organization (WHO) plans to submit the 11th revision of the International Classification of Diseases (ICD) to the World Health Assembly in 2018. The WHO is working toward a revised classification system that has an enhanced ability to capture health concepts in a manner that reflects current scientific evidence and that is compatible with contemporary information systems. In this paper, we present recommendations made to the WHO by the ICD revision's Quality and Safety Topic Advisory Group (Q&S TAG) for a new conceptual approach to capturing healthcare-related harms and injuries in ICD-coded data. The Q&S TAG has grouped causes of healthcare-related harm and injuries into four categories that relate to the source of the event: (a) medications and substances, (b) procedures, (c) devices and (d) other aspects of care. Under the proposed multiple coding approach, one of these sources of harm must be coded as part of a cluster of three codes to depict, respectively, a healthcare activity as a 'source' of harm, a 'mode or mechanism' of harm and a consequence of the event summarized by these codes (i.e. injury or harm). Use of this framework depends on the implementation of a new and potentially powerful code-clustering mechanism in ICD-11. This new framework for coding healthcare-related harm has great potential to improve the clinical detail of adverse event descriptions, and the overall quality of coded health data.
Resumo:
Abstract Objective: To compare the diagnostic performance of the three-dimensional turbo spin-echo (3D TSE) magnetic resonance imaging (MRI) technique with the performance of the standard two-dimensional turbo spin-echo (2D TSE) protocol at 1.5 T, in the detection of meniscal and ligament tears. Materials and Methods: Thirty-eight patients were imaged twice, first with a standard multiplanar 2D TSE MR technique, and then with a 3D TSE technique, both in the same 1.5 T MRI scanner. The patients underwent knee arthroscopy within the first three days after the MRI. Using arthroscopy as the reference standard, we determined the diagnostic performance and agreement. Results: For detecting anterior cruciate ligament tears, the 3D TSE and routine 2D TSE techniques showed similar values for sensitivity (93% and 93%, respectively) and specificity (80% and 85%, respectively). For detecting medial meniscal tears, the two techniques also had similar sensitivity (85% and 83%, respectively) and specificity (68% and 71%, respectively). In addition, for detecting lateral meniscal tears, the two techniques had similar sensitivity (58% and 54%, respectively) and specificity (82% and 92%, respectively). There was a substantial to almost perfect intraobserver and interobserver agreement when comparing the readings for both techniques. Conclusion: The 3D TSE technique has a diagnostic performance similar to that of the routine 2D TSE protocol for detecting meniscal and anterior cruciate ligament tears at 1.5 T, with the advantage of faster acquisition.
Resumo:
During mitosis, the duplicated genome must be accurately divided between two daughter cells. Polo-like kinase 1 (Plk1) and Aurora B kinase, together with its binding partners Incenp, Survivin and Borealin (chromosomal passenger complex, CPC), have key roles in coordinating mitotic events. The accuracy of cell division is safeguarded by a signaling cascade termed the mitotic spindle checkpoint (SC), which ensures that chromosomes are not physically separated before correct bipolar attachments have been formed between kinetochores and spindle microtubules (MT). An inhibitory “wait anaphase” signal, which delays chromosome separation (anaphase onset), is created at individual kinetochores and broadcasted throughout the cell in response to lack of kinetochore-microtubule (kMT) attachment or proper interkinetochore tension. It is believed that the fast turnover of SC molecules at kinetochores contributes to the cell’s ability to produce this signal and enables rapid responses to changing cellular conditions. Kinetochores that lack MT attachment and tension express a certain phosphoepitope called the 3F3/2 phosphoepitope, which has been linked to SC signaling. In the experimental part, we investigated the regulation of the 3F3/2 phosphoepitope, analyzed whether CPC molecules turn over at centromeres, and dissected the mitotic roles of the CPC using a microinjection technique that allowed precise temporal control over its function. We found that the kinetochore 3F3/2 phosphoepitope is created by Plk1, and that CPC proteins exhibit constant exchange at centromeres. Moreover, we found that CPC function is necessary in the regulation of chromatid movements and spindle morphology in anaphase. In summary, we identified new functions of key mitotic regulators Plk1 and CPC, and provided insighs into the coordination of mitotic events.
Resumo:
The [3+4] cycloaddition between furan and the oxyallyl cation generated from 1-bromo-1-phenylpropan-2-one (4), resulted in the formation of 2-phenyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (5) in 30% yield. This compound was further converted into 2-phenyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]oct-2-ene (13) in 35.4% yield. The selective effect of compound (13) and its isomer 3-phenyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]oct -2-ene (1a) on the radicle growth of Sorghum bicolor L. (sorghum) and Cucumis sativus L. (cucumber) were evaluated. For both plants, compound 13 showed to be more potent than its isomer 1a.
Resumo:
The extravasation of leukocytes from the blood stream into the tissues is a prerequisite for adequate immune surveillance and immune reaction. The leukocyte movement from the bloodstream into the tissues is mediated by molecular bonds. The bonds are formed between adhesion molecules on endothelial cells and their counterparts expressed on leukocytes. Vascular adhesion protein-1 (VAP-1) is an endothelial adhesion molecule mediating leukocyte interactions with endothelium. It is also an enzyme having semicarbazide sensitive amine oxidase (SSAO) activity. The SSAOactivity catalyses deamination of primary amines into corresponding aldehyde and during the enzymatic reaction hydrogen peroxide and ammonia are produced. The aim of this study was to investigate the relationship between the adhesive and enzymatic activities of VAP-1. The role of VAP-1 in leukocyte traffic was studied in vivo under normal and pathological conditions in VAP-1 deficient mice. The results from in vitro flow-based assays indicated that VAP-1 uses both SSAOactivity and its adhesive epitope to bind leukocytes, and both are perquisites for VAP-1 mediated adhesion. Furthermore, in vivo results demonstrated that leukocyte trafficking was impaired in vivo by deleting VAP-1 or inhibiting SSAO-activity. There was impairment in lymphocyte recirculation as well as leukocyte accumulation into the inflamed area. Moreover, the VAP-1 deficient mice did not show generalized defects in antimicrobial responses, whereas significant reduction in tumor progression and neovascularization was observed. These results indicate that VAP-1 could be used as a target in anti-adhesive therapies either by blocking its adhesive epitope with antibodies or by inhibiting its SSAO-activity using inhibitors. Moreover, targeting of VAP-1 may provide a new way of inhibiting neovascularization in tumors.
Resumo:
N-3-(1-Methylindol-3-yl)propan-N-(2,2,2-trichloroethoxysulfonyl)guanidine was synthesized from 3-formyl-1-methylindole in six steps and subjected to conditions intended to convert the side-chain into a 2-iminotetrahydropyrimidine- containing product, of relevance to a possible synthesis of the aplicyanins. An alternative reaction course was observed, resulting in the formation of a new tetracyclic system.
Resumo:
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.
Resumo:
The present paper deals with the bis-insertion reactions of 1,2-diphenylacetylene into Pd-C bond of the cyclopalladated complexes [Pd(dmba)(µ-NCO)]2 (1) and [Pd(dmba)(MeCN)2](NO3) (2) (dmba = N,N-dimethylbenzylamine, MeCN = acetonitrile). Two new complexes [Pd{PhC=CPh-CPh=CPhC6H4CH2N(CH 3)2}(NCO)] (3) and [Pd{PhC=CPh-CPh=CPhC6H4CH2N(CH 3)2}(NO3 )] (4) were obtained and characterized by IR and NMR spectroscopy and elemental analysis.