902 resultados para barium titanate nanotubes
Resumo:
Soybean oil transesterification with ethanol was carried out in a batch reactor using USY zeolites modified with barium and strontium (15 wt.%) as catalysts. A series of three catalytic cycles were performed for each zeolite without any loss of activity. The biodiesel product was analyzed by HPLC and FT-Raman, and the catalysts by pyridine and CO2 adsorption. Ba/USY provided higher conversions (> 97%) than Sr/USY (< 75%). The increased catalytic activity of Ba/USY was attributed to two different effects: a larger number of basic sites; and a lower interaction between barium species and HUSY BrØnsted sites.
Resumo:
There are many controversies regarding the cyto- and genotoxicity of carbon nanotubes (CNTs). In this work, we discuss that many of the incongruous arguments are probably associated with the poor physical-chemical characterization of the CNT samples used in many publications. This manuscript presents examples of carbon nanostructures observed under high resolution electron microscopy that can be found in typical CNT samples, and shows which roles in cyto- and genotoxicity need to be better investigated. Issues concerning chemical treatment are addressed and examples of misunderstandings that can occur during the studies of cyto- and genotoxicity of CNT samples are given.
Resumo:
This study reports on the construction of a turbidimeter employing light emitting diodes as radiation source at a wavelength of 405 nm, a photodiode as detector, a temperature sensor and a microcontroller used for data acquisition and processing. The turbidimeter was applied to determine sulfate concentrations in natural water employing barium chloride as reagent. Potential interferences and recovery studies were performed and an interference of 3.5 % and a recovery between 97.8 and 108 % were estimated. The analytical performance of in situ turbidimeter for the determination of sulfate was evaluated and compared with two commercial spectrophotometers and a good agreement was obtained.
Resumo:
This paper describes the synthesis and characterization of layered barium, calcium and strontium benzoates and evaluates the potential of these materials as catalysts in the synthesis of methyl benzoate. The methyl esterification of benzoic acid was investigated, where the effects of temperature, alcohol:acid molar ratio and amount of catalyst were evaluated. Ester conversions of 65 to 70% were achieved for all the catalysts under the best reaction conditions. The possibility of recycling these metallic benzoates was also demonstrated, evidenced by unaltered catalytic activity for three consecutive reaction cycles.
Resumo:
TiO2 nanotubes were synthesized by hydrothermal method and doped with three nitrogen compounds to enhance photocatalytic activity under visible light. Catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and specific surface area and pore volume determined by BET and BJH methods, respectively. Photocatalytic activity was evaluated by photodegradation of rhodamine B under visible and UV radiations. Results showed doped-nanotubes were more efficient under visible light. The best photocatalytic activity was for sample NTT-7-600/NH3I, being 30% higher than the non-doped sample.
Resumo:
Two parallel tests were carried out to evaluate barium solubility in soils treated with barite under reducing conditions: one in leaching columns and another with potted plants cultivated with rice. Soils were treated with three doses of barite and kept at two humidity levels. The reduction (-200 mV) condition promoted an increase in barium in the geochemical fraction of higher liability, higher concentrations of barium in the leached extracts, and higher absorption by rice plants. As a result of increased uptake and accumulation of barium, the plants showed stunted growth
Resumo:
The dispersion of carbon nanotubes in water for their utilization in nanoscale devices is a challenging task. Comparative studies on interaction and dispersion of multi-wall carbon nanotubes (MWNT) using two different surfactants (sodium dodecyl sulfate, SDS, and polyoxyethylenesorbitanmonooleate, Tween 80) are presented. The interaction between carbon nanotubes and surfactants was studied by tensiometry, conductivimetry, and fluorimetry. The dispersions of MWNT in surfactants were characterized using a UV-vis spectrophotometer. For effective dispersion, the minimum weight ratio of MWNT to surfactant was 1:41 and 1:3 for SDS and Tween 80, respectively.
Resumo:
Titanium dioxide nanostructured catalysts (nanotubes) doped with different metals (silver, gold, copper, palladium and zinc) were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.
Resumo:
In this work, nanostructured samples of barium zirconate (BaZrO3) and calcium zirconate (CaZrO3) were synthesized by the gel-combustion method, using glycine as fuel. The ceramic powders were calcined at 550 °C for 2 h and subsequently heat treated at 1350 °C for 10 min (fast-firing). The X-ray diffraction technique was employed to identify and characterize the crystalline phases present in the synthesized powders, using the Rietveld method. Monophasic nanostructured samples of BaZrO3 and CaZrO3 presenting average crystallite sizes of around 8.5 and 10.3 nm, respectively, were found after fast-firing.
Resumo:
Compulsory in Brazil, toy certification aims to prevent possible risks in toy use. The Brazilian National Institute of Metrology (INMETRO) establishes the maximum concentration of toxic elements (TE) that may be present in toys. This study evaluates the presence of TE in different crayons, gouache and modeling clays using X-ray fluorescence. This technique is fast, has low operating cost and minimum sample pretreatment, resulting in a clean procedure without reagent consumption and waste generation. Bromine (in gouache) and Barium (in crayons) were the only potentially TE identified in the samples studied.
Resumo:
A sensitive spectrophotometric method was developed for sulphate determination in automotive ethanol fuel. The method based on the reaction of the analyte with barium-dibromosulphonazo(III) complex lead to a decrease in the magnitude of the absorbance signals monitored at 649 nm. No sample pretreatment is required and the proposed method allows sulphate determination in the 0.45 - 6.50 mg L-1 range with R.S.D. < 2% and limit of detection of 0.14 mg L-1. The method has been successfully applied for sulphate determination in automotive ethanol fuel and the results agreed with the reference chromatographic method.
Resumo:
This study describes the use of Principal Component Analysis to evaluate the chemical composition of water produced from eight oil wells in three different production areas. A total of 609 samples of produced water, and a reference sample of seawater, were characterized according to their levels of salinity, calcium, magnesium, strontium, barium and sulphate (mg L-1) contents, and analyzed by using PCA with autoscaled data. The method allowed the identification of variables salinity, calcium and strontium as tracers for formation water, and variables magnesium and sulphate as tracers for seawater.
Resumo:
We describe general considerations about the present and the future standing of carbon nanostructures, mainly carbon nanotubes and graphene. Basic concepts and definitions, select structure/property relationships, and potential applications are reviewed. The analysis of the global market for these nanostructures, the commercial products available currently, the role of the chemistry, the main challenges remaining and a brief view of the field in Brazil are also presented and discussed.
Resumo:
The synthesis and characterization of different platinum nanoparticle/carbon nanotube nanocomposite samples are described along with the application of these nanocomposites as electrocatalysts for alcohol oxidation. Samples were prepared by a biphasic system in which platinum nanoparticles (Pt-NPs) are synthesized in situ in contact with a carbon nanotube (CNT) dispersion. Variables including platinum precursor/CNT ratio, previous chemical treatment of carbon nanotubes, and presence or absence of a capping agent were evaluated and correlated with the characteristic of the synthesized materials. Samples were characterized by Raman spectroscopy, X-ray diffraction, thermogravimetric analysis and transmission electron microscopy. Glassy carbon electrodes were modified by the nanocomposite samples and evaluated as electrocatalysts for alcohol oxidation. Current densities of 56.1 and 79.8/104.7 mA cm-2 were determined for the oxidation of methanol and ethanol, respectively.
Resumo:
ZnO/TiO2 nanocomposites were prepared by impregnating zinc acetate dihydrate on the surface of titanium dioxide P25, followed by thermal treatment at 350, 600, 750, and 900 °C, in order to investigate the TiO2 phase and titanate formation and the role of the latter in the photocatalytic activity of the nanocomposite. In the nanocomposites, the anatase-to-rutile transition is favored due to the presence of Zn2+, and the conversion is nearly complete at 750 °C. The presence of zinc metatitanate in the sample heated at 600 °C had no significant effect on the nanocomposite photocatalytic activity.