925 resultados para ayers of formal neurons, separability principles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compelling evidence has accumulated over the last several years from our laboratory, as well as others, indicating that central hyperactive states resulting from neuronal plastic changes within the spinal cord play a critical role in hyperalgesia associated with nerve injury and inflammation. In our laboratory, chronic constriction injury of the common sciatic nerve, a rat model of neuropathic pain, has been shown to result in activation of central nervous system excitatory amino acid receptors and subsequent intracellular cascades including protein kinase C translocation and activation, nitric oxide production, and nitric oxide-activated poly(ADP ribose) synthetase activation. Similar cellular mechanisms also have been implicated in the development of tolerance to the analgesic effects of morphine. A recently observed phenomenon, the development of “dark neurons,” is associated with both chronic constriction injury and morphine tolerance. A site of action involved in both hyperalgesia and morphine tolerance is in the superficial laminae of the spinal cord dorsal horn. These observations suggest that hyperalgesia and morphine tolerance may be interrelated at the level of the superficial laminae of the dorsal horn by common neural substrates that interact at the level of excitatory amino acid receptor activation and subsequent intracellular events. The demonstration of interrelationships between neural mechanisms underlying hyperalgesia and morphine tolerance may lead to a better understanding of the neurobiology of these two phenomena in particular and pain in general. This knowledge may also provide a scientific basis for improved pain management with opiate analgesics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormalities of prefrontal cortical function are prominent features of schizophrenia and have been associated with genetic risk, suggesting that susceptibility genes for schizophrenia may impact on the molecular mechanisms of prefrontal function. A potential susceptibility mechanism involves regulation of prefrontal dopamine, which modulates the response of prefrontal neurons during working memory. We examined the relationship of a common functional polymorphism (Val108/158 Met) in the catechol-O-methyltransferase (COMT) gene, which accounts for a 4-fold variation in enzyme activity and dopamine catabolism, with both prefrontally mediated cognition and prefrontal cortical physiology. In 175 patients with schizophrenia, 219 unaffected siblings, and 55 controls, COMT genotype was related in allele dosage fashion to performance on the Wisconsin Card Sorting Test of executive cognition and explained 4% of variance (P = 0.001) in frequency of perseverative errors. Consistent with other evidence that dopamine enhances prefrontal neuronal function, the load of the low-activity Met allele predicted enhanced cognitive performance. We then examined the effect of COMT genotype on prefrontal physiology during a working memory task in three separate subgroups (n = 11–16) assayed with functional MRI. Met allele load consistently predicted a more efficient physiological response in prefrontal cortex. Finally, in a family-based association analysis of 104 trios, we found a significant increase in transmission of the Val allele to the schizophrenic offspring. These data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I describe physiologically plausible “voter-coincidence” neural networks such that secondary “coincidence” neurons fire on the simultaneous receipt of sufficiently large sets of input pulses from primary sets of neurons. The networks operate such that the firing rate of the secondary, output neurons increases (or decreases) sharply when the mean firing rate of primary neurons increases (or decreases) to a much smaller degree. In certain sensory systems, signals that are generally smaller than the noise levels of individual primary detectors, are manifest in very small increases in the firing rates of sets of afferent neurons. For such systems, this kind of network can act to generate relatively large changes in the firing rate of secondary “coincidence” neurons. These differential amplification systems can be cascaded to generate sharp, “yes–no” spike signals that can direct behavioral responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress early in postnatal life may result in long-term memory deficits and selective loss of hippocampal neurons. The mechanisms involved are poorly understood, but they may involve molecules and processes in the immature limbic system that are activated by stressful challenges. We report that administration of corticotropin-releasing hormone (CRH), the key limbic stress modulator, to the brains of immature rats reproduced the consequences of early-life stress, reducing memory functions throughout life. These deficits were associated with progressive loss of hippocampal CA3 neurons and chronic up-regulation of hippocampal CRH expression. Importantly, they did not require the presence of stress levels of glucocorticoids. These findings indicate a critical role for CRH in the mechanisms underlying the long-term effects of early-life stress on hippocampal integrity and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

trkB is the high-affinity receptor for brain-derived neurotrophic factor (BDNF), a trophic molecule with demonstrated effects on the survival and differentiation of a wide variety of neuronal populations. In the mammalian retina, trkB is localized to both ganglion cells and numerous cells in the inner nuclear layer. Much information on the role of BDNF in neuronal development has been derived from the study of trkB- and BDNF-deficient mutant mice. This includes an attenuation of the numbers of cortical neurons immunopositive for the calcium-binding proteins, parvalbumin, and calbindin. Unfortunately, these mutant animals typically fail to survive for > 24-48 hr after birth. Since most retinal neuronal differentiation occurs postnatally, we have devised an alternative scheme to suppress the expression of trkB in the retina to examine the role of BDNF on the postnatal development of neurons of the inner retina. Neonatal rats were treated with intraocular injection of an antisense oligonucleotide (1-2 microliters of 10-100 microM solution) targeted to the trkB mRNA. Immunohistochemistry with a polyclonal antibody to trkB showed that the expression of trkB in retinal neurons was suppressed 48-72 hr following a single injection. Northern blot analysis demonstrated that antisense treatment had no effect on the level of trkB mRNA, even after multiple injections. This suggests an effect of trkB antisense treatment on protein translation, but not on RNA transcription. No alterations were observed in the thickness of retinal cellular or plexiform layers, suggesting that BDNF is not the sole survival factor for these neurons. There were, however, alterations in the patterns of immunostaining for parvalbumin, a marker for the narrow-field, bistratified AII amacrine cell-a central element of the rod (scotopic) pathway. This was evidenced by a decrease in both the number of immunostained somata (> 50%) and in the intensity of immunolabeling. However, the immunostaining pattern of calbindin was not affected. These studies suggest that the ligands for trkB have specific effects on the neurochemical phenotypic expression of inner retinal neurons and in the development of a well-defined retinal circuit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the construction of a safe, replication-defective and efficient lentiviral vector suitable for in vivo gene delivery. The reverse transcription of the vector was found to be a rate-limiting step; therefore, promoting the reaction inside the vector particles before delivery significantly enhanced the efficiency of gene transfer. After injection into the brain of adult rats, sustained long-term expression of the transgene was obtained in the absence of detectable pathology. A high proportion of the neurons in the areas surrounding the injection sites of the vector expressed the transduced beta-galactosidase gene. This pattern was invariant in animals sacrificed several months after a single administration of the vector. Transduction occurs by integration of the vector genome, as it was abolished by a single amino acid substitution in the catalytic site of the integrase protein incorporated in the vector. Development of clinically acceptable derivatives of the lentiviral vector may thus enable the sustained delivery of significant amounts of a therapeutic gene product in a wide variety of somatic tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian olfactory epithelium (OE) supports continual neurogenesis throughout life, suggesting that a neuronal stem cell exists in this system. In tissue culture, however, the capacity of the OE for neurogenesis ceases after a few days. In an attempt to identify conditions that support the survival of neuronal stem cells, a population of neuronal progenitors was isolated from embryonic mouse OE and cultured in defined serum-free medium. The vast majority of cells rapidly gave rise to neurons, which died shortly thereafter. However, when purified progenitors were co-cultured with cells derived from the stroma underlying the OE, a small subpopulation (0.07-0.1%) gave rise to proliferative colonies. A morphologically identifiable subset of these colonies generated new neurons as late as 7 days in vitro. Interestingly, development of these neuronal colonies was specifically inhibited when purified progenitors were plated onto stromal feeder cells in the presence of a large excess of differentiated OE neurons. These results indicate that a rare cell type, with the potential to undergo prolonged neurogenesis, can be isolated from mammalian OE and that stroma-derived factors are important in supporting neurogenesis by this cell. The data further suggest that differentiated neurons provide a signal that feeds back to inhibit production of new neurons by their own progenitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The invasion of sodium spikes from the soma into dendrites was studied in hippocampal pyramidal cells by simultaneous extracellular and intracellular recordings in anesthetized rats and by simultaneous extracellular recordings of the somatic and dendritic potentials in freely behaving animals. During complex-spike patterns, recorded in the immobile or sleeping animal, dendritic invasion of successive spikes was substantially attenuated. Complex-spike bursts occurred in association with population discharge of CA3-CA1 pyramidal cells (sharp wave field events). Synaptic inhibition reduced the amplitude of sodium spikes in the dendrites and prevented the occurrence of calcium spikes. These findings indicate that (i) the voltage-dependent calcium influx into the dendrites is under the control of inhibitory neurons and (ii) the temporal coincidence of synaptic depolarization and activation of voltage-dependent calcium conductances by the backpropagating spikes during sharp wave bursts may be critical for synaptic plasticity in the intact hippocampus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hippocampal neuron loss is widely viewed as a hallmark of normal aging. Moreover, neuronal degeneration is thought to contribute directly to age-related deficits in learning and memory supported by the hippocampus. By taking advantage of improved methods for quantifying neuron number, the present study reports evidence challenging these long-standing concepts. The status of hippocampal-dependent spatial learning was evaluated in young and aged Long-Evans rats using the Morris water maze, and the total number of neurons in the principal cell layers of the dentate gyrus and hippocampus was quantified according to the optical fractionator technique. For each of the hippocampal fields, neuron number was preserved in the aged subjects as a group and in aged individuals with documented learning and memory deficits indicative of hippocampal dysfunction. The findings demonstrate that hippocampal neuronal degeneration is not an inevitable consequence of normal aging and that a loss of principal neurons in the hippocampus fails to account for age-related learning and memory impairment. The observed preservation of neuron number represents an essential foundation for identifying the neurobiological effects of hippocampal aging that account for cognitive decline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the recently identified presenilin 1 gene on chromosome 14 cause early onset familial Alzheimer disease (FAD). Herein we describe the expression and analysis of the protein coded by presenilin 1 (PS1) in NT2N neurons, a human neuronal model system. PS1 was expressed using recombinant Semliki Forest virions and detected by introduced antigenic tags or antisera to PS1-derived peptides. Immunoprecipitation revealed two major PS1 bands of approximately 43 and 50 kDa, neither of which were N-glycosylated or O-glycosylated. Immunoreactive PS1 was detected in cell bodies and dendrites of NT2N neurons but not in axons or on the cell surface. PS1 was also detected in BHK cells, where it was also intracellular and colocalized with calnexin, a marker for the rough endoplasmic reticulum. A mutant form of PS1 linked to FAD did not differ from the wild-type protein at the light microscopic level. The model system described here will enable studies of the function of PS1 in human neurons and the role of mutant PS1 in FAD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dopamine hypothesis of schizophrenia proposes that hyperactivity of dopaminergic transmission is associated with this illness, but direct observation of abnormalities of dopamine function in schizophrenia has remained elusive. We used a newly developed single photon emission computerized tomography method to measure amphetamine-induced dopamine release in the striatum of fifteen patients with schizophrenia and fifteen healthy controls. Amphetamine-induced dopamine release was estimated by the amphetamine-induced reduction in dopamine D2 receptor availability, measured as the binding potential of the specific D2 receptor radiotracer [123I] (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl) methyl]benzamide ([123I]IBZM). The amphetamine-induced decrease in [123I]IBZM binding potential was significantly greater in the schizophrenic group (-19.5 +/- 4.1%) compared with the control group (-7.6 +/- 2.1%). In the schizophrenic group, elevated amphetamine effect on [123I]IBZM binding potential was associated with emergence or worsening of positive psychotic symptoms. This result suggests that psychotic symptoms elicited in this experimental setting in schizophrenic patients are associated with exaggerated stimulation of dopaminergic transmission. Such an observation would be compatible with an abnormal responsiveness of dopaminergic neurons in schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the induction of long-term potentiation (LTP) in hippocampal slices adenosine triphosphate (ATP) is secreted into the synaptic cleft, and a 48 kDa/50 kDa protein duplex becomes phosphorylated by extracellular ATP. All the criteria required as evidence that these two proteins serve as principal substrates of ecto-protein kinase activity on the surface of hippocampal pyramidal neurons have been fulfilled. This phosphorylation activity was detected on the surface of pyramidal neurons assayed after synaptogenesis, but not in immature neurons nor in glial cells. Addition to the extracellular medium of a monoclonal antibody termed mAb 1.9, directed to the catalytic domain of protein kinase C (PKC), inhibited selectively this surface protein phosphorylation activity and blocked the stabilization of LTP induced by high frequency stimulation (HFS) in hippocampal slices. This antibody did not interfere with routine synaptic transmission nor prevent the initial enhancement of synaptic responses observed during the 1-5 min period immediately after the application of HFS (the induction phase of LTP). However, the initial increase in the slope of excitatory postsynaptic potentials, as well as the elevated amplitude of the population spike induced by HFS, both declined gradually and returned to prestimulus values within 30-40 min after HFS was applied in the presence of mAb 1.9. A control antibody that binds to PKC but does not inhibit its activity had no effect on LTP. The selective inhibitory effects observed with mAb 1.9 provide the first direct evidence of a causal role for ecto-PK in the maintenance of stable LTP, an event implicated in the process of learning and the formation of memory in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alpha subunit of type II calcium/calmodulin-dependent protein kinase (CAM II kinase-alpha) plays an important role in longterm synaptic plasticity. We applied preembedding immunocytochemistry (for CAM II kinase-alpha) and postembedding immunogold labeling [for glutamate or gamma-aminobutyric acid (GABA)] to explore the subcellular relationships between transmitter-defined axon terminals and the kinase at excitatory and inhibitory synapses in thalamus and cerebral cortex. Many (but not all) axon terminals ending in asymmetric synapses contained presynaptic CAM II kinase-alpha immunoreactivity; GABAergic terminals ending in symmetric synapses did not. Postsynaptically, CAM II kinase-alpha immunoreactivity was associated with postsynaptic densities of many (but not all) glutamatergic axon terminals ending on excitatory neurons. CAM II kinase-alpha immunoreactivity was absent at postsynaptic densities of all GABAergic synapses. The findings show that CAM II kinase-alpha is selectively expressed in subpopulations of excitatory neurons and, to our knowledge, demonstrate for the first time that it is only associated with glutamatergic terminals pre- and postsynaptically. CAM II kinase-alpha is unlikely to play a role in plasticity at GABAergic synapses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of neurotrophins to modulate the survival and differentiation of neuronal populations involves the Trk/MAP (mitogen-activated protein kinase) kinase signaling pathway. More recently, neurotrophins have also been shown to regulate synaptic transmission. The synapsins are a family of neuron-specific phosphoproteins that play a role in regulation of neurotransmitter release, in axonal elongation, and in formation and maintenance of synaptic contacts. We report here that synapsin I is a downstream effector for the neurotrophin/Trk/MAP kinase cascade. Using purified components, we show that MAP kinase stoichiometrically phosphorylated synapsin I at three sites (Ser-62, Ser-67, and Ser-549). Phosphorylation of these sites was detected in rat brain homogenates, in cultured cerebrocortical neurons, and in isolated presynaptic terminals. Brain-derived neurotrophic factor and nerve growth factor upregulated phosphorylation of synapsin I at MAP kinase-dependent sites in intact cerebrocortical neurons and PC12 cells, respectively, while KCl- induced depolarization of cultured neurons decreased the phosphorylation state at these sites. MAP kinase-dependent phosphorylation of synapsin I significantly reduced its ability to promote G-actin polymerization and to bundle actin filaments. The results suggest that MAP kinase-dependent phosphorylation of synapsin I may contribute to the modulation of synaptic plasticity by neurotrophins and by other signaling pathways that converge at the level of MAP kinase activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing evidence that oxidative stress and mitochondrial respiratory failure with attendant decrease in energy output are implicated in nigral neuronal death in Parkinson disease (PD). It is not known, however, which cellular elements (neurons or glial cells) are major targets of oxygen-mediated damage. 4-Hydroxy-2-nonenal (HNE) was shown earlier to react with proteins to form stable adducts that can be used as markers of oxidative stress-induced cellular damage. We report here results of immunochemical studies using polyclonal antibodies directed against HNE-protein conjugates to label the site of oxidative damage in control subjects (ages 18-99 years) and seven patients that died of PD (ages 57-78 years). All the nigral melanized neurons in one of the midbrain sections were counted and classified into three groups according to the intensity of immunostaining for HNE-modified proteins--i.e., no staining, weak staining, and intensely positive staining. On average, 58% of nigral neurons were positively stained for HNE-modified proteins in PD; in contrast only 9% of nigral neurons were positive in the control subjects; the difference was statistically significant (Mann-Whitney U test; P < 0.01). In contrast to the substantia nigra, the oculomotor neurons in the same midbrain sections showed no or only weak staining for HNE-modified proteins in both PD and control subjects; young control subjects did not show any immunostaining; however, aged control subjects showed weak staining in the oculomotor nucleus, suggesting age-related accumulation of HNE-modified proteins in the neuron. Our results indicate the presence of oxidative stress within nigral neurons in PD, and this oxidative stress may contribute to nigral cell death.