943 resultados para automated full waveform logging system
Resumo:
Good quality concept lattice drawings are required to effectively communicate logical structure in Formal Concept Analysis. Data analysis frameworks such as the Toscana System use manually arranged concept lattices to avoid the problem of automatically producing high quality lattices. This limits Toscana systems to a finite number of concept lattices that have been prepared a priori. To extend the use of formal concept analysis, automated techniques are required that can produce high quality concept lattice drawings on demand. This paper proposes and evaluates an adaption of layer diagrams to improve automated lattice drawing. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
We study the electrical transport of a harmonically bound, single-molecule C-60 shuttle operating in the Coulomb blockade regime, i.e. single electron shuttling. In particular, we examine the dependance of the tunnel current on an ultra-small stationary force exerted on the shuttle. As an example, we consider the force exerted on an endohedral N@C-60 by the magnetic field gradient generated by a nearby nanomagnet. We derive a Hamiltonian for the full shuttle system which includes the metallic contacts, the spatially dependent tunnel couplings to the shuttle, the electronic and motional degrees of freedom of the shuttle itself and a coupling of the shuttle's motion to a phonon bath. We analyse the resulting quantum master equation and find that, due to the exponential dependence of the tunnel probability on the shuttle-contact separation, the current is highly sensitive to very small forces. In particular, we predict that the spin state of the endohedral electrons of N@C-60 in a large magnetic gradient field can be distinguished from the resulting current signals within a few tens of nanoseconds. This effect could prove useful for the detection of the endohedral spin-state of individual paramagnetic molecules such as N@C-60 and P@C-60, or the detection of very small static forces acting on a C-60 shuttle.
Resumo:
Utilisation by fish of different estuarine habitats is known to vary at many different temporal scales, however no study to date has examined how utilisation varies at all the relevant times scales simultaneously. Here, we compare the utilisation by fish of sandy, intertidal foreshore habitats in a subtropical estuary at four temporal scales: between major spawning periods (spring/ summer and winter), among months within spawning periods, between the full and new moon each month, and between night and day within those lunar phases. Comparisons of assemblage composition, abundance of individuals and of fish in seven different,ecological guilds' were used to identify the temporal scales at which fish varied their use of unvegetated sandy habitats in the lower Noosa Estuary, Queensland, Australia. Fish assemblages were sampled with a seine net at three different regions. The most numerically dominant species caught were southern herring (Herklotsichthys castelnaui: Clupeidae), sand whiting (Sillago ciliata: Sillaginidae), weeping toadfish (Torquigener pleurogramma: Tetraodomidae), and silver biddy (Gerres subfasciatus: Gerreidae). Considerable variation at a range of temporal scales from short term (day versus night) to longer term (spawning periods) was detected for all but one of the variables examined. The clearest patterns were observed for diurnal effects, where generally abundance was greater at night than during the day. There were also strong lunar effects, although there were no consistent patterns between full moon and new moon periods. Significant differences among months within spawning periods were more common than differences between the actual spawning periods. The results clearly indicate that utilisation of sandy, unvegetated estuarine habitats is very dynamic and highly variable in space and time. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
T he international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM(2), comprised 60,770 full- length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein- coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full- length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web- based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full- length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding ( including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full- length cDNAs. The total number of distinct non- protein- coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and. nal expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species.
Resumo:
We report the case study of a 68-year-old female with cardiac syndrome X presenting with abnormal pressure waveforms and a hypertensive response to exercise with ST-segment depression. After amlodipine treatment, pressure waveform morphology was significantly improved, exercise testing was normal and symptoms had resolved. This case emphasizes the potential clinical value of arterial waveform analysis.
Resumo:
Prior studies have shown that innovative information systems (IS) adoption behaviour by small-and medium-sized enterprises (SMEs) is greatly dependent on organizational and environmental characteristics. Government influence (i.e., federal and local government agencies) was found to play an important role in the promotion or enforcement of innovative IS adoption by SMEs, and it is vital for ensuring adoption of nationwide innovative IS, particularly in developing economies. This study introduces the construct of enacted capabilities and examines the enacted capabilities that motivate SMEs to use innovative IS (i.e., a government's electronic procurement systems) to its full potential. A model of how enacted capabilities affect IS adoption behaviour through perceived net benefits and attitude is developed. A survey (and follow-up interviews) of CEOs/owners from Malaysian SMEs was conducted. Results indicate the enacted capabilities possessed by SMEs play a prominent role in determining the adoption of government electronic procurement systems by these enterprises.
Resumo:
Since 2001, Mexico has been designing, legislating, and implementing a major health-system reform. A key component was the creation of Seguro Popular, which is intended to expand insurance coverage over 7 years to uninsured people, nearly half the total population at the start of 2001. The reform included five actions: legislation of entitlement per family affiliated which, with full implementation, will increase public spending on health by 0.8-1.0% of gross domestic product; creation of explicit benefits packages; allocation of monies to decentralised state ministries of health in proportion to number of families affiliated; division of federal resources flowing to states into separate funds for personal and non-personal health services; and creation of a fund to protect families against catastrophic health expenditures. Using the WHO health-systems framework, we used a wide range of datasets to assess the effect of this reform on different dimensions of the health system. Key findings include: affiliation is preferentially reaching the poor and the marginalised communities; federal non-social security expenditure in real per-head terms increased by 38% from 2000 to 2005; equity of public-health expenditure across states improved; Seguro Popular affiliates used more inpatient and outpatient services than uninsured people; effective coverage of 11 interventions has improved between 2000 and 2005-06; inequalities in effective coverage across states and wealth deciles has decreased over this period; catastrophic expenditures for Seguro Popular affiliates are lower than for uninsured people even though use of services has increased. We present some lessons for Mexico based on this interim evaluation and explore implications for other countries considering health reforms.
Resumo:
Many developing south-east Asian governments are not capturing full rent from domestic forest logging operations. Such rent losses are commonly related to institutional failures, where informal institutions tend to dominate the control of forestry activity in spite of weakly enforced regulations. Our model is an attempt to add a new dimension to thinking about deforestation. We present a simple conceptual model, based on individual decisions rather than social or forest planning, which includes the human dynamics of participation in informal activity and the relatively slower ecological dynamics of changes in forest resources. We demonstrate how incumbent informal logging operations can be persistent, and that any spending aimed at replacing the informal institutions can only be successful if it pushes institutional settings past some threshold. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The road to electric rope shovel automation is marked with technological innovations that include an increase in operational information available to mining operations. The CRCMining Shovel Operator Information System not only collects machine operational data but also provides the operator with knowledge-of-performance and influences his/her performance to achieve higher productivity with reduced machine duty. The operator’s behaviour is one of the most important aspects of the man-machine interaction to be considered before semi- or fully-automated shovel systems can be realised. This paper presents the results of the rope shovel studies conducted by CRCMining between 2002 and 2004, provides information on current research to improve shovel performance and briefly discusses the implications of human-system interactions on future designs of autonomous machines.
Resumo:
Formal methods have significant benefits for developing safety critical systems, in that they allow for correctness proofs, model checking safety and liveness properties, deadlock checking, etc. However, formal methods do not scale very well and demand specialist skills, when developing real-world systems. For these reasons, development and analysis of large-scale safety critical systems will require effective integration of formal and informal methods. In this paper, we use such an integrative approach to automate Failure Modes and Effects Analysis (FMEA), a widely used system safety analysis technique, using a high-level graphical modelling notation (Behavior Trees) and model checking. We inject component failure modes into the Behavior Trees and translate the resulting Behavior Trees to SAL code. This enables us to model check if the system in the presence of these faults satisfies its safety properties, specified by temporal logic formulas. The benefit of this process is tool support that automates the tedious and error-prone aspects of FMEA.