996 resultados para as-grown crystal
Resumo:
Unusually long (>14 cm) crystalline needles grow from 4-(3-bromopropyloxy)salicylaldehyde 1 presumably as a consequence of Br ... Br interactions; the powdered form of 1 shows one order of magnitude greater SHG activity realtive to urea.
Resumo:
Photoluminescence (PL) of high quality GaN epitaxial layer grown on beta-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an `S-like' shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be similar to 27.8 +/- 0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed similar to 4.5 +/- 2 x 10(17) Cm-3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We prove that CdS nanocrystals can be thermodynamically stabilized in both wurtzite and zinc-blende crystallographic phases at will, just by the proper choice of the capping ligand. As a striking demonstration of this, the largest CdS nanocrystals (similar to 15 nm diameter) ever formed with the zinc-blende structure have been synthesized at a high reaction temperature of 310 degrees C, in contrast to previous reports suggesting the formation of zinc-blende CdS only in the small size limit (< 4.5 nm) or at a lower reaction temperature (<= 240 degrees C). Theoretical analysis establishes that the binding energy of trioctylphosphine molecules on the (001) surface of zinc-blende CdS is significantly larger than that for any of the wurtzite planes. Consequently, trioctylphosphine as a capping agent stabilizes the zinc-blende phase via influencing the surface energy that plays an important role in the overall energetics of a nanocrystal. Besides achieving giant zinc-blende CdS nanocrystals, this new understanding allows us to prepare CdSe and CdSe/CdS core/shell nanocrystals in the zinc-blende structure.
Resumo:
Molybdenum-cofactor (Moco) biosynthesis is an evolutionarily conserved pathway in almost all kingdoms of life, including humans. Two proteins, MogA and MoeA, catalyze the last step of this pathway in bacteria, whereas a single two-domain protein carries out catalysis in eukaryotes. Here, three crystal structures of the Moco-biosynthesis protein MogA from the two thermophilic organisms Thermus thermophilus (TtMogA; 1.64 angstrom resolution, space group P2(1)) and Aquifex aeolicus (AaMogA; 1.70 angstrom resolution, space group P2(1) and 1.90 angstrom resolution, space group P1) have been determined. The functional roles and the residues involved in oligomerization of the protein molecules have been identified based on a comparative analysis of these structures with those of homologous proteins. Furthermore, functional roles have been proposed for the N- and C-terminal residues. In addition, a possible protein-protein complex of MogA and MoeA has been proposed and the residues involved in protein-protein interactions are discussed. Several invariant water molecules and those present at the subunit interfaces have been identified and their possible structural and/or functional roles are described in brief. In addition, molecular-dynamics and docking studies with several small molecules (including the substrate and the product) have been carried out in order to estimate their binding affinities towards AaMogA and TtMogA. The results obtained are further compared with those obtained for homologous eukaryotic proteins.
Resumo:
Using intensity autocorrelation of multiply scattered light, we show that the increase in interparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0.115µm and 0.089µm results in freezing into a crystalline phase at volume fraction? of 0.1 and into a glassy state at?=0.2. The functional form of the field autocorrelation functiong (1)(t) for the binary fluid phase is fitted to exp[??(6k 0 2 D eff t)1/2] wherek 0 is the magnitude of the incident light wavevector and? is a parameter inversely proportional to the photon transport mean free pathl*. TheD eff is thel* weighted average of the individual diffusion coefficients of the pure species. Thel* used in calculatingD eff was computed using the Mie theory. In the solid (crystal or glass) phase, theg (1)(t) is fitted (only with a moderate success) to exp[??(6k 0 2 W(t))1/2] where the mean-squared displacementW(t) is evaluated for a harmonically bound overdamped Brownian oscillator. It is found that the fitted parameter? for both the binary and monodisperse suspensions decreases significantly with the increase of interparticle interactions. This has been justified by showing that the calculated values ofl* in a monodisperse suspension using Mie theory increase very significantly with the interactions incorporated inl* via the static structure factor.
Resumo:
The reactions of the mononuclear cyclodiphosphazane complexes, cis-[Mo(CO)(4){cis-[PhNP(OR)](2)}(2)] with [Mo(CO)(4)(nbd)] (nbd = norbornadiene). [Mo(CO)(4)(NHC5H10)(2)] or [MCl(2)(cod)] (cod = cycloocta-1,5-diene) afforded the homobimetallic complexes; [Mo-2(CO)(8){mu-cis-[PhNP(OR)](2)}(2)] (R = C(5)H(4)Me-p 5 or CH2CF3 6) or the heterobimetallic complexes. [Mo-2(CO)(8){mu-cis-[PhNP(OE)](2)}(2)MCl(2)] (R = C(6)H(4)Me-p; M = Pd 7 or Pt 8). In all the above complexes, the two metal moieties are bridged by two cyclodiphosphazane ligands. The reactions of the mononuclear complexes, cis-[M(CO)(4)(A){cis-[PhNP(OC(6)H(4)Me-p)](2)}] with (M'Cl-2(cod)] afforded the trinuclear complexes, cis-[M'Cl-2[M(CO)(4)(A){cis-[PhNP(OC(6)H(4)Me-p)](2)}](2)] (M' = Pd, M = Mo, A = P(OMe)(3) 10; M' = Pt, M = Mo. A = P(OMe)(3) 11; M' = Pd. M = W. A = NHC5H10 12; M' = Pt, M = W. A = NHC5H10 13). The structure of the complex 5 has been determined by single-crystal X-ray crystallography.
Resumo:
A new ruthenium(II) complex of the type [Ru(O2CMe)(MeCN)2(PPh3)2](CiO4) (1) has been isolated from a reaction between Ru2Cl(O2CMe), and PPh3 in MeCN followed by the addition of NaClO4. The structure of 1 is determined by single crystal X-ray studies. The crystal belongs to the monoclinic space group C2/m with the following unit cell dimensions for the C42H39N2O6P2ClRu(M = 866.15): a = 23.295(1)angstrom, b = 23.080(1)angstrom, c = 9.159(1)angstrom, beta = 107.32(1)-degrees, V = 4701(1)angstrom3, Z = 4, D(c) = 1.224 gcm-3, lambda(Mo - K-alpha) = 0.7107 angstrom, mu(Mo - K-alpha) = 4.09 cm-1, T = 293K, R = 0.081 (R(w) = 0.094) for 2860 reflections with I greater-than-or-equal-to 3-sigma(I) and g = 0.015853. In the complex cation, the symmetry about the metal centre is essentially octahedral showing the presence of a chelating acetato, two cis-oriented MeCN and two trans-disposed PPh3 ligands. The mechanistic aspects of the core cleavage reaction are discussed.
Resumo:
Styryl coumarins generally yield centrosymmetric (alpha-mode, anti-HT) photodimers when subjected to irradiation in the solid state, However, the substitution of fluorine dramatically alters the packing mode and steers the molecules 4-(4-fluorostyryl)coumarin 1 and 4-(2-fluorostyryl)coumarin 2 to form a stereospecific photodimer, beta-mode, syn-HH across the styrenic double bond (yield 78-85%). The stereochemistry of the photodimer 2a has been established by X-ray crystallography. There is no evidence for the presence of C-H ... F interactions. The true nature of the weak atom-atom interactions called into play when fluorine is substituted is not clear, It is observed that the fluoro substituted compounds have greater crystal density than the corresponding unsubstituted ones.
Resumo:
C17H19ClO, M(r) = 274.7, triclinic, P1BAR, a = 11.154 (3), b = 12.685 (2), c = 12.713 (2) angstrom, alpha = 100.68 (1), beta = 113.58 (1), gamma = 104.50 (2)-degrees, V = 1511.1 (6) angstrom3, Z = 4, D(m) = 1.22, D(x) = 1.215 Mg m-3, Cu K-alpha, lambda = 1.5418 angstrom, mu = 2.16 mm-1, F(000) = 584, T = 293 K, R = 0.057 for 3481 observed reflections. The title compound is photostable in the crystalline state and lattice-energy calculations have been employed to rationalize the photobehaviour. The well-known beta-steering ability of the chloro group is not operative in this system as there are no Cl...Cl interactions in the crystal lattice. All five benzylidene-DL-piperitone structures so far studied are alpha-packed and the molecular topology appears to be a deciding factor even in the presence of steering groups.
Resumo:
BaCu(C2O4)(2) . 6H2O is triclinic, P (1) over bar, with a = 6.5405(9), b = 9.202(3), c = 10.939(1) Angstrom, alpha = 85.46(2), beta = 79.22(1), gamma = 80.45(2), V = 636.99(1) Angstrom(3), Z = 2, D-0 = 2.14, D-c = 2.465 g . cm(-3), R = 0.074, wR = 0.0746 for 2219 significant reflections \F-0\ greater than or equal to 6.0 sigma F-0. The barium has eleven coordinations and the coordination polyhedra is a capped antiprism. Six water oxygen atoms are coordinated whereas the other five are coming from the oxalate group. In the unit cell the molecule's form a polymeric network. One lattice water molecule belongs to the coordinating water. The barium oxygen distances vary from 2.75 Angstrom to 3.15 Angstrom.
Resumo:
Here we report on an x-ray specular reflectivity study of Ce-Si-Ge trilayers grown on Si(001) single-crystal substrate by ion beam sputtering deposition at various substrate temperatures. The electron-density profile of the trilayer as a function of depth, obtained from x-ray-reflectivity data, reveals an intermixing of Si and Ge. The x-ray-reflectivity data have been analyzed using a scheme based on the distorted-wave Born approximation, and the validity of the analysis scheme was checked using simulated data. Analyzed results provided information regarding interdiffusion in this system. We notice that although the Si-on-Ge interface is sharp, a Si0.4Ge0.6 alloy is formed at the Ge-on-Si interface.