960 resultados para aromatic l-amino acid decarboxylase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BRCA2 N372H nonconservative amino acid substitution polymorphism appears to affect fetal survival in a sex-dependent manner, and the HH genotype was found to be associated with a 1.3-fold risk of breast cancer from pooling five case-control studies of Northern European women. We investigated whether the BR 2 N372H polymorphism was associated with breast cancer in Australian women using a population-based case-control design. The BRCA2 372 genotype was determined in 1397 cases under the age of 60 years at diagnosis of a first primary breast cancer and in 775 population-sampled controls frequency matched for age. Case-control analyses and comparisons of genotype distributions were conducted using logistic regression. All of the statistical tests were two-tailed. The HH genotype was independent of age and family history of breast cancer within cases and controls, and was more common in cases (9.2% versus 6.5%). It was associated with an increased risk of breast cancer, 1.47-fold unadjusted (95% confidence interval, 1.05-2.07; P = 0.02), and 1.42-fold (95% confidence interval, 1.00-2.02; P = 0.05) after adjusting for measured risk factors. This effect was still evident after excluding women with any non-Caucasian ancestry or the 33 cases known to have inherited a mutation in BRCA1 or BRCA2, and would explain similar to3% of breast cancer. The BRCA2 N372H polymorphism appears to be associated with a modest recessively inherited risk of breast cancer in Australian women. This result is consistent with the findings for Northern European women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochromes P450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiologic and xenobiotic compounds in eukaryotes and prokaryotes. Studies on bacterial P450s, particularly those involved in monoterpene oxidation, have provided an integral contribution to our understanding of these proteins, away from the problems encountered with eukaryotic forms. We report here a novel cytochrome P450 (P450(cin), CYP176A1) purified from a strain of Citrobacter braakii that is capable of using cineole 1 as its sole source of carbon and energy. This enzyme has been purified to homogeneity and the amino acid sequences of three tryptic peptides determined. By using this information, a PCR-based cloning strategy was developed that allowed the isolation of a 4-kb DNA fragment containing the cytochrome P450(cin) gene (cinA). Sequencing revealed three open reading frames that were identified on the basis of sequence homology as a cytochrome P450, an NADPH-dependent flavodoxin/ferrodoxin reductase, and a flavodoxin. This arrangement suggests that P450(cin) may be the first isolated P450 to use a flavodoxin as its natural redox partner. Sequencing also identified the unprecedented substitution of a highly conserved, catalytically, important active site threonine with an asparagine residue. The P450 gene was subcloned and heterologously expressed in Escherichia coli at similar to2000 nmol/liter of original culture, and purification was achieved by standard protocols. Postulating the native E. coli flavodoxin/flavodoxin reductase system might mimic the natural redox partners of P450,in, it was expressed in E. coli in the presence of cineole 1. A product was formed in vivo that was tentatively identified by gas chromatography-mass spectrometry as 2-hydroxycineole 2. Examination of P450(cin) by UV-visible spectroscopy revealed typical spectra characteristic of P450s, a high affinity for cineole 1 (K-D = 0.7 mum), and a large spin state change of the heme iron associated with binding of cineole 1. These facts support the hypothesis that cineole 1 is the natural substrate for this enzyme and that P450(cin) catalyzes the initial monooxygenation of cineole 1 biodegradation. This constitutes the first characterization of an enzyme involved in this pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An active form of the Dengue virus protease NS3 (CF40.Gly.NS3pro) was expressed in Escherichia coli. This construct consists of a critical 40 amino acid cofactor domain from NS2B fused to the N-terminal 184 amino acid protease domain of NS3 via a flexible, covalent linker (Gly(4)SerGly(4)). The recombinantly produced protein is soluble and has a hexa-histidine tag engineered at the N-terminus for ease of purification using metal affinity chromatography. However, the presence of lower molecular weight impurities after affinity chromatography indicated the need for additional purification steps. The consistent appearance of these impurities suggested that they may be the products of proteolysis and/or auto-proteolysis. The latter possibility was subsequently excluded by the observation of the same impurities in a purified, catalytically inactive form of the recombinant protease (CF40.Gly.NS3pro.SA). Further analysis indicated that these impurities may represent premature translation termination products. Regardless of their origin, they were shown to form various sized aggregates with full-length CF40.Gly.NS3pro that can be separated by size exclusion chromatography, yielding fractions of active protease of sufficient purity for crystallisation trials. The ultimate goal of these studies is to obtain a crystal structure of a catalytically active form of the Dengue virus NS3 protease for structure-based drug design. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant toxins are substances produced and secreted by plants to defend themselves against predators. In a broad sense, this includes all substances that have a toxic effect on targeted organisms, whether they are microbes, other plants, insects, or higher animals. Plant toxins have a diverse range of structures, from small organic molecules through to proteins. This review gives an overview of the various classes of plant toxins but focuses on an interesting class of protein-based plant toxins containing a cystine knot motif. This structural motif confers exceptional stability on proteins containing it and is associated with a wide range of biological activities. The biological activities and structural stability offer many potential applications in the pharmaceutical and agricultural fields. One particularly exciting prospect is in the use of protein-based plant toxins as molecular scaffolds for displaying pharmaceutically important bioactivities. Future applications of plant toxins are likely to involve genetic engineering techniques and molecular pharming approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retinoid orphan-related receptor-alpha (RORalpha) is a member of the ROR subfamily of orphan receptors and acts as a constitutive activator of transcription in the absence of exogenous ligands. To understand the basis of this activity, we constructed a homology model of Rill using the closely related TRbeta as a template. Molecular modeling suggested that bulky hydrophobic side chains occupy the RORa ligand cavity leaving a small but distinct cavity that may be involved in receptor stabilization. This model was subject to docking simulation with a receptor-interacting peptide from the steroid receptor coactivator, GR-interacting protein-1, which delineated a coactivator binding surface consisting of the signature motif spanning helices 3-5 and helix 12 [activation function 2 (AF2)]. Probing this surface with scanning alanine mutagenesis showed structural and functional equivalence between homologous residues of RORalpha and TRbeta. This was surprising (given that Rill is a ligand-independent activator, whereas TRbeta has an absolute requirement for ligand) and prompted us to use molecular modeling to identify differences between Rill and TRbeta in the way that the All helix interacts with the rest of the receptor. Modeling highlighted a nonconserved amino acid in helix 11 of RORa (Phe491) and a short-length of 3.10 helix at the N terminus of AF2 which we suggest i) ensures that AF2 is locked permanently in the holoconformation described for other liganded receptors and thus 2) enables ligand-independent recruitment of coactivators. Consistent with this, mutation of RORa Phe491 to either methionine or alanine (methionine is the homologous residue in TRbeta), reduced and ablated transcriptional activation and recruitment of coactivators, respectively. Furthermore, we were able to reconstitute transcriptional activity for both a deletion mutant of Ill lacking All and Phe491 Met, by overexpression of a GAL-AF2 fusion protein, demonstrating ligand-independent recruitment of AF2 and a role for Phe491 in recruiting AF2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

alpha-Conotoxin AuIB and a disulfide bond variant of AuIB have been synthesized to determine the role of disulfide bond connectivity on structure and activity. Both of these peptides contain the 15 amino acid sequence GCCSYPPCFATNPDC, with the globular (native) isomer having the disulfide connectivity Cys(2-8 and 3-15) and the ribbon isomer having the disulfide connectivity Cys(2-15 and 3-8). The solution structures of the peptides were determined by NAIR spectroscopy, and their ability to block the nicotinic acetylcholine receptors on dissociated neurons of the rat parasympathetic ganglia was examined. The ribbon disulfide isomer, although having a less well defined structure, is surprisingly found to have approximately 10 times greater potency than the native peptide. To our knowledge this is the first demonstration of a non-native disulfide bond isomer of a conotoxin exhibiting greater biological activity than the native isomer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RT-PCR followed by 5'- and 3'- rapid amplification of cDNA ends was used to clone and sequence ovine prolactin-releasing peptide (PrRP). The cDNA was characterised by short 5'- and 3'-untranslated regions and a GC-rich (71%) coding region. The nucleotide and deduced amino acid sequences for the coding region showed 95.6 and 94.9% identity with bovine PrRP but the amino acid sequence of PrRP31 was conserved between these species. Northern blot analysis and RT-PCR showed that, as in the rat, the peptide was more abundantly expressed in the brainstem than the hypothalamus. However, in the ovine hypothalamus, PrRP mRNA expression was more widespread than in the rat, with expression detected in both rostral and caudal parts of the mediobasal hypothalamus. The effects of synthetic ovine PrRP on prolactin secretion both in vitro and in vivo were also examined. In primary cultures of sheep pituitary cells, PrRP significantly (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal and glial high-affinity transporters regulate extracellular glutamate concentration, thereby terminating synaptic transmission and preventing neuronal excitotoxicity. Glutamate transporter activity has been shown to be modulated by protein kinase C (PKC) in cell culture. This is the first study to demonstrate such modulation in situ, by following the fate of the non-metabolisable glutamate transporter substrate, D-aspartate. In the rat retina, pan-isoform PKC inhibition with chelerythrine suppressed glutamate uptake by GLAST (glutamate/aspartate transporter), the dominant excitatory amino acid transporter localized to the glial Muller cells. This effect was mimicked by rottlerin but not by Go6976, suggesting the involvement of the PKCdelta isoform, but not PKCalpha, beta or gamma. Western blotting and immunohistochemical labeling revealed that the suppression of glutamate transport was not due to a change in transporter expression. Inhibition of PKCdelta selectively suppressed GLAST but not neuronal glutamate transporter activity. These data suggest that the targeting of specific glutamate transporters with isoform-specific modulators of PKC activity may have significant implications for the understanding of neurodegenerative conditions arising from compromised glutamate homeostasis, e.g. glaucoma and amyotrophic lateral sclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transthyretin (TTR) is a 55 kDa protein responsible for the transport of thyroid hormones and retinol in human serum. Misfolded forms of the protein are implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases. To assist in such studies we developed a method for the solid phase synthesis of the monomeric unit of a TTR analogue and its folding to form a functional 55 kDa tetramer. The monomeric unit of the protein was chemically synthesized in three parts, comprising amino acid residues 151, 5499 and 102127, and ligated using chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of the TTRs native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, TTR antibody recognition and thyroid hormone binding. In the current study the solution structure of the first of these fragment peptides, TTR(151) is examined to determine its intrinsic propensity to form beta-sheet structure, potentially involved in amyloid fibril formation by TTR. Despite the presence of extensive beta-structure in the native form of the protein, the Nterminal fragment adopts an essentially random coil conformation in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular loop 3 (ECL3) of the mammalian gonadotropin-releasing hormone receptor (GnRH-R) contains an acidic amino acid (Glu(301) in the mouse GnRH-R,) that confers agonist selectivity for Are in mammalian GnRH. It is proposed that a specific conformation of ECL3 is necessary to orientate the carboxyl side chain of the acidic residue for interaction with Arg(8) of GnRH, which is supported by decreased affinity for Arg(8) GnRH but not Gln(8) GnRH when an adjacent Pro is mutated to Ala. To probe the structural contribution of the loop domain to the proposed presentation of the carboxyl side chain, we synthesized a model peptide (CGPEMLNRVSEPGC) representing residues 293-302 of mouse ECL3, where Cys and Gly residues are added symmetrically at the N and C termini, respectively, allowing the introduction of a disulfide bridge to simulate the distances at which the ECL3 is tethered to the transmembrane domains 6 and 7 of the receptor. The ability of the ECL3 peptide to bind GnRH with low affinity was demonstrated by its inhibition of GnRH stimulation of inositol phosphate production in cells expressing the GnRH-R. The CD bands of the ECL3 peptides exhibited a superposition of predominantly unordered structure and partial contributions from beta-sheet structure. Likewise, the analysis of the amide I and amide III bands from micro-Raman and FT Raman experiments revealed mainly unordered conformations of the cyclic and of the linear peptide. NMR data demonstrated the presence of a beta-hairpin among an ensemble of largely disordered structures in the cyclic peptide. The location of the turn linking the two strands of the hairpin was assigned to the three central residues L-296, N-297, and R-298. A small population of structured species among an ensemble of predominantly random coil conformation suggests that the unliganded receptor represents a variety of structural conformers, some of which have the potential to make contacts with the ligand. We propose a mechanism of receptor activation whereby binding of the agonist to the inactive receptor state induces and stabilizes a particular structural state of the loop domain, leading to further conformational rearrangements across the transmembrane domain and signal propagating interaction with G proteins. Interaction of the Glu(301) of the receptor with Arg(8) of GnRH induces a folded configuration of the ligand. Our proposal thus suggests that conformational changes of both ligand and receptor result from this interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested from a previous study in our laboratory that differences in the pharmacology of the species variants of the noradrenaline transporter (NET) are the result of four non-conservative amino acid exchanges from the total of 26 amino acids that are divergent between the rat NET (rNET) and human NET (hNET). The aim of this study was to examine the effects of changing the rNET at each of these four amino acid residues, which markedly alter local charge distribution, to the amino acid found in hNET. Site-directed mutagenesis was used to create mutant cDNAs from rNET cDNA. The mutant NETs (rK71), rE62K, rK375N and rR612Q), rNET and hNET were expressed in transiently transfected COS-7 cells to determine the effects of the mutations on the differing pharmacological properties of the species variants. The ratios of V-max for noradrenaline uptake and B-max for nisoxetine binding (which are a measure of the turnover number of the transporter, i.e. the number of transport cycles per min) were greater for rNET and rR612Q than for hNET, rK71), rE62K and rK375N. The K-m of noradrenaline was lower for hNET, rK713, rE62K and rK375N than for rNET or rR612Q. There were no differences between the K-i values for inhibition of noradrenaline uptake by nisoxetine for rNET, hNET or the mutants, but the K-i values of cocaine were lower for hNET, rE62K and rR612Q than rNET or rK375N. Hence, the study showed that: (1) the aspartate 7. lysine 62 and asparagine 375 amino acid residues are important in determining the lower substrate translocation by hNET than rNET; (2) the aspartate 7 and lysine 62 residues in the N-terminus of hNET determine the higher affinities of substrates for the hNET than the rNET; and (3) the lysine 62 and glutamine 612 residues in the N- and C-termini, respectively, of hNET Lire determinants of the higher cocaine affinity for the hNET than rNET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The N-methyl-D-aspartate (NMDA)-selective subtype of ionotropic glutamate receptor is of importance in neuronal differentiation and synapse consolidation, activity-dependent forms of synaptic plasticity, and excitatory amino acid-mediated neuronal toxicity [Neurosci. Res. Program, Bull. 19 (1981) 1; Lab. Invest. 68 (1993) 372]. NMDA receptors exist in vivo as tetrameric or pentameric complexes comprising proteins from two families of homologous subunits, designated NR1 and NR2(A-D) [Biochem. Biophys. Res. Commun. 185 (1992) 826]. The gene coding for the human NR1 subunit (hNR1) is composed of 21 exons, three of which (4, 20 and 21) can be differentially spliced to generate a total of eight distinct subunit variants. We detail here a competitive RT-PCR (cRT-PCR) protocol to quantify endogenous levels of hNR1 splice variants in autopsied human brain. Quantitation of each hNR1 splice variant is performed using standard curve methodology in which a known amount of synthetic ribonucleic acid competitor (internal standard) is co-amplified against total RNA. This method can be used for the quantitation of hNR1 mRNA levels in response to acute or chronic disease states, in particular in the glutamatergic-associated neuronal loss observed in Alzheimer's disease [J. Neurochem. 78 (2001) 175]. Furthermore, alterations in hNR1 mRNA expression may be reflected at the translational level, resulting in functional changes in the NMDA receptor. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HLA-B*4402 and B*4403 are naturally occurring MHC class I alleles that are both found at a hi,,h frequency in all human populations, and vet they only differ by one residue on the alpha2 helix (B*4402 Aspl56-->B*4403 Leu156) CTLs discriminate between HLA-B*4402 and B*4403, and these allotypes stimulate strong mutual allogeneic responses reflecting their known barrier to hemopoeitic stem cell transplantation. Although HLA-B*4402 and B*4403 share >95% of their peptide repertoire, B*4403 presents more unique peptides than B*4402, consistent with the stronger T cell alloreactivity observed toward B*4403 compared with B*4402. Crystal structures of B*4402 and B*4403 show how the polymorphisin at position 156 is completely buried and yet alters both the peptide and the heavy chain conformation, relaxing ligand selection by B*4403 compared with B*4402. Thus, the polymorphism between HLA-B*4402 and B 4403 modifies both peptide repertoire and T cell recognition, and is reflected lit the paradoxically powerful alloreactivity that occurs across this minimal mismatch. The findings suggest that these closely related class I genes are maintained lit diverse human populations through their differential impact on the selection of peptide ligands and the T cell repertoire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the timing of mutations in BRAF (v-raf murine sarcoma viral oncogene homolog B1) during melanocytic neoplasia, we carried out mutation analysis on microdissected melanoma and nevi samples. We observed mutations resulting in the V599E amino-acid substitution in 41 of 60 (68%) melanoma metastases, 4 of 5 (80%) primary melanomas and, unexpectedly, in 63 of 77 (82%) nevi. These data suggest that mutational activation of the RAS/RAF/MAPK pathway in nevi is a critical step in the initiation of melanocytic neoplasia but alone is insufficient for melanoma tumorigenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclotides are a recently discovered family of disulfide rich proteins from plants that contain a circular protein backbone. They are exceptionally stable, as exemplified by their use in native medicine of the prototypic cyclotide kalata B1. The peptide retains uterotonic activity after the plant from which it is derived is boiled to make a medicinal tea. The circular backbone is thought to be in part responsible for the stability of the cyclotides, and to investigate its role in determining structure and biological activity, an acyclic derivative, des-(24-28)-kalata B1, was chemically synthesized and purified. This derivative has five residues removed from the 29-amino acid circular backbone of kalata B1 in a loop region corresponding to a processing site in the biosynthetic precursor protein. Two-dimensional NMR spectra of the peptide were recorded, assigned, and used to identify a series of distance, angle, and hydrogen bonding restraints. These were in turn used to determine a representative family of solution structures. Of particular interest was a determination of the structural similarities and differences between des-(2428)-kalata B1 and native kalata B1. Although the overall three-dimensional fold remains very similar to that of the native circular protein, removal of residues 24-28 of kalata B1 causes disruption of some structural features that are important to the overall stability. Furthermore, loss of hemolytic activity is associated with backbone truncation and linearization.