795 resultados para anodic passivation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contrasting and interesting electrochemical behavior is observed in anodic oxidation of N-substituted p-toluenesulfinamides under controlled current conditions. For sulfinamides derived from secondary alkylamines and primary arylamines, the N-sulfinyl group is removed and the corresponding amines are formed; for sulfinamides derived from primary alkylamines, sulfur oxidation yields the corresponding sulfonamides in good yields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced oxidation processes (AOPs) are modern methods using reactive hydroxyl radicals for the mineralization of organic pollutants into simple inorganic compounds, such as CO2 and H2O. Among AOPs electrochemical oxidation (EO) is a method suitable for coloured and turbid wastewaters. The degradation of pollutants occurs on electrocatalytic electrodes. The majority of electrodes contain in their structure either expensive materials (diamond and Pt-group metals) or are toxic for the environment compounds (Sb or Pb). One of the main disadvantages of electrochemical method is the polarization and contamination of electrodes due to the deposition of reaction products on their surface, which results in diminishing of the process efficiency. Ultrasound combined with the electrochemical degradation process eliminates electrode contamination because of the continuous mechanical cleaning effect produced by the formation and collapse of acoustic cavitation bubbles near to the electrode surface. Moreover, high frequency ultrasound generates hydroxyl radicals at water sonolysis. Ultrasound-assisted EO is a non-selective method for oxidation of different organic compounds with high degradation efficiencies. The aim of this research was to develop novel sustainable and cost-effective electrodes working as electrocatalysts and test their activity in electrocatalytic oxidation of organic compounds such as dyes and organic acids. Moreover, the goal of the research was to enhance the efficiency of electrocatalytic degradation processes by assisting it with ultrasound in order to eliminate the main drawbacks of a single electrochemical oxidation such as electrodes polarization and passivation. Novel Ti/Ta2O5-SnO2 electrodes were developed and found to be electrocatalytically active towards water (with 5% Ta content, 10 oxide film layers) and organic compounds oxidation (with 7.5% Ta content, 8 oxide film layers) and therefore these electrodes can be applicable in both environmental and energy fields. The synergetic effect of combined electrolysis and sonication was shown while conducting sonoelectrochemical (EO/US) degradation of methylene blue (MB) and formic acid (FA). Complete degradation of MB and FA was achieved after 45 and 120 min of EO/US process respectively in neutral media. Mineralization efficiency of FA over 95% was obtained after 2 h of degradation using high frequency ultrasound (381, 863, 1176 kHz) combined with 9.1 mA/cm2 current density. EO/US degradation of MB provided over 75% mineralization in 8 h. High degradation kinetic rates and mineralization efficiencies of model pollutants obtained in EO/US experiments provide the preconditions for further extrapolation of this treatment method to pilot scale studies with industrial wastewaters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International audience

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-temperature magneto-photoluminescence is a very powerful technique to characterize high purity GaAs and InP grown by various epitaxial techniques. These III-V compound semiconductor materials are used in a wide variety of electronic, optoelectronic and microwave devices. The large binding energy differences of acceptors in GaAs and InP make possible the identification of those impurities by low-temperature photoluminescence without the use of any magnetic field. However, the sensitivity and resolution provided by this technique rema1ns inadequate to resolve the minute binding energy differences of donors in GaAs and InP. To achieve higher sensitivity and resolution needed for the identification of donors, a magneto-photoluminescence system 1s installed along with a tunable dye laser, which provides resonant excitation. Donors 1n high purity GaAs are identified from the magnetic splittings of "two-electron" satellites of donor bound exciton transitions 1n a high magnetic field and at liquid helium temperature. This technique 1s successfully used to identify donors 1n n-type GaAs as well as 1n p-type GaAs in which donors cannot be identified by any other technique. The technique is also employed to identify donors in high purity InP. The amphoteric incorporation of Si and Ge impurities as donors and acceptors in (100), (311)A and (3ll)B GaAs grown by molecular beam epitaxy is studied spectroscopically. The hydrogen passivation of C acceptors in high purity GaAs grown by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) 1s investigated using photoluminescence. Si acceptors ~n MBE GaAs are also found to be passivated by hydrogenation. The instabilities in the passivation of acceptor impurities are observed for the exposure of those samples to light. Very high purity MOCVD InP samples with extremely high mobility are characterized by both electrical and optical techniques. It is determined that C is not typically incorporated as a residual acceptor ~n high purity MOCVD InP. Finally, GaAs on Si, single quantum well, and multiple quantum well heterostructures, which are fabricated from III-V semiconductors, are also measured by low-temperature photoluminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Aminothiazole covalently attached to a silica gel surface was prepared in order to obtain an adsorbent for Hg(II) ions having the following characteristics: good sorption capacity, chemical stability under conditions of use, and, especially, high selectivity. The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2-aminothiazole (SIAMT-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to + 0.6 V versus Ag/AgCl (0.02 mol L-1 KNO3; V = 20 mV s(-1)) show two peaks one at about 0.1 V and other at 0.205 V. The anodic wave peak at 0.205 V is well defined and does not change during the cycles and it was therefore further investigated for analytical purposes using differential pulse anodic stripping voltammetry in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n = 6) of 0.02 and 0.20 mg L-1 Hg(II) was 4.1 and 3.5% (relative standard deviation), respectively. The detection limit was estimated as 0.10 mu g L-1 mercury(II) by means of 3:1 current-to-noise ratio in connection with the optimization of the various parameters involved and using the highest-possible analyser sensitivity. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructures are highly attractive for future electrical energy storage devices because they enable large surface area and short ion transport time through thin electrode layers for high power devices. Significant enhancement in power density of batteries has been achieved by nano-engineered structures, particularly anode and cathode nanostructures spatially separated far apart by a porous membrane and/or a defined electrolyte region. A self-aligned nanostructured battery fully confined within a single nanopore presents a powerful platform to determine the rate performance and cyclability limits of nanostructured storage devices. Atomic layer deposition (ALD) has enabled us to create and evaluate such structures, comprised of nanotubular electrodes and electrolyte confined within anodic aluminum oxide (AAO) nanopores. The V2O5- V2O5 symmetric nanopore battery displays exceptional power-energy performance and cyclability when tested as a massively parallel device (~2billion/cm2), each with ~1m3 volume (~1fL). Cycled between 0.2V and 1.8V, this full cell has capacity retention of 95% at 5C rate and 46% at 150C, with more than 1000 charge/discharge cycles. These results demonstrate the promise of ultrasmall, self-aligned/regular, densely packed nanobattery structures as a testbed to study ionics and electrodics at the nanoscale with various geometrical modifications and as a building block for high performance energy storage systems[1, 2]. Further increase of full cell output potential is also demonstrated in asymmetric full cell configurations with various low voltage anode materials. The asymmetric full cell nanopore batteries, comprised of V2O5 as cathode and prelithiated SnO2 or anatase phase TiO2 as anode, with integrated nanotubular metal current collectors underneath each nanotubular storage electrode, also enabled by ALD. By controlling the amount of lithium ion prelithiated into SnO2 anode, we can tune full cell output voltage in the range of 0.3V and 3V. This asymmetric nanopore battery array displays exceptional rate performance and cyclability. When cycled between 1V and 3V, it has capacity retention of approximately 73% at 200C rate compared to 1C, with only 2% capacity loss after more than 500 charge/discharge cycles. With increased full cell output potential, the asymmetric V2O5-SnO2 nanopore battery shows significantly improved energy and power density. This configuration presents a more realistic test - through its asymmetric (vs symmetric) configuration – of performance and cyclability in nanoconfined environment. This dissertation covers (1) Ultra small electrochemical storage platform design and fabrication, (2) Electron and ion transport in nanostructured electrodes inside a half cell configuration, (3) Ion transport between anode and cathode in confined nanochannels in symmetric full cells, (4) Scale up energy and power density with geometry optimization and low voltage anode materials in asymmetric full cell configurations. As a supplement, selective growth of ALD to improve graphene conductance will also be discussed[3]. References: 1. Liu, C., et al., (Invited) A Rational Design for Batteries at Nanoscale by Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 23-30. 2. Liu, C.Y., et al., An all-in-one nanopore battery array. Nature Nanotechnology, 2014. 9(12): p. 1031-1039. 3. Liu, C., et al., Improving Graphene Conductivity through Selective Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 133-138.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin commercial aluminum electrolytic and passed through reactions was obtained with anodic alumina membranes nanopores. These materials have applications in areas recognized electronic, biomedical, chemical and biological weapons, especially in obtaining nanostructures using these membranes as a substrate or template for processing nanowires, nanodots and nanofibers for applications noble. Previous studies showed that the membranes that have undergone heat treatment temperature to 1300° C underwent changes in morphology, crystal structure and optical properties. This aim, this thesis, a study of the heat treatment of porous anodic alumina membranes, in order to obtain and to characterize the behavior changes structures during the crystallization process of the membranes, at temperatures ranging between 300 and 1700° C. It was therefore necessary to mount a system formed by a tubular furnace resistive alumina tube and controlled environment, applying flux with special blend of Ag-87% and 13% N2, in which argon had the role of carrying out the oxygen nitrogen system and induce the closing of the pores during the densification of the membrane. The duration of heat treatment ranged from 60 to 15 minutes, at temperatures from 300 to 1700° C respectively. With the heat treatment occurred: a drastic reduction of porosity, grain growth and increased translucency of the membrane. For the characterization of the membranes were analyzed properties: Physical - thermogravimetric, X-ray diffraction, BET surface area; morphological - SEM, EDS through compositional and, optical absorbance, and transmittance in the UV-VIS, and FTIR. The results using the SEM showed that crystallization has occurred, densification and significant changes in membrane structure, as well as obtaining microtube, the BET analysis showed a decrease in specific surface area of the membranes has to 44.381 m2.g-1 to less than 1.8 m2.g-1 and in the analysis of transmittance and absorbance was found a value of 16.5% in the range of 800 nm, characteristic of the near infrared and FTIR have confirmed the molecular groups of the material. Thus, one can say that the membranes were mixed characteristics and properties which qualify for use in gas filtration system, as well as applications in the range of optical wavelength of the infra-red, and as a substrate of nanomaterials. This requires the continuation and deepening of additional study

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Química, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical quartz crystal microbalance was used to monitor the mass changes during the electrochemical characterization of a zeolite-templated carbon (ZTC) in 1 M H2SO4 medium. Under electrochemical oxidation conditions, a high anodic current and a net mass increase were recorded, resulting in the increase of the specific capacitance owing to the contribution of the pseudocapacitance, mainly derived from the hydroquinone–quinone redox couple. Under more severe electrochemical conditions, a net mass loss was observed, revealing that electrochemical gasification took place. Surface chemistry, before and after the electrochemical treatments, was analyzed through temperature programmed desorption experiments. Furthermore, in situ Raman spectroscopy was used to further characterize the structural changes produced in ZTC under the electrochemical conditions applied, supporting that high potential values produce the electrochemical oxidation and degradation of the carbon material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho teve como objectivo, o desenvolvimento de um método electroquímico, para quantificação do fármaco carbamazepina (CBZ) em águas contaminadas. Neste trabalho foram utilizados quatro métodos voltamétricos: a voltametria cíclica, a voltametria de varrimento linear, a voltametria de onda quadrada e a voltametria de impulso diferencial. Os eléctrodos de trabalho utilizados foram, o eléctrodo de mercúrio de gota suspensa, o eléctrodo de carbono vítreo clássico e um eléctrodo de carbono vítreo modificado com um filme de nanotubos de carbono de paredes múltiplas (MWCNTs). O eléctrodo de mercúrio de gota suspensa permitiu o estudo da redução da CBZ numa região de potencial mais catódico, e os eléctrodos de carbono vítreo, com e sem modificação, permitiram o estudo da oxidação da CBZ numa região de potencial mais anódico. Nas condições experimentais estudadas, o eléctrodo de mercúrio de gota suspensa revelou ser um sensor voltamétrico pouco eficaz na determinação quantitativa da carbamazepina, em amostras com uma matriz complexa. Entre os eléctrodos de carbono vítreo, o eléctrodo de carbono vítreo modificado com os MWCNTs revelou ser o sensor voltamétrico mais eficaz e sensível, na detecção e determinação da carbamazepina. Modificado com um filme de nanotubos de carbono de paredes múltiplas, que previamente foram dispersos em dihexadecilhidrogenofosfato (DHP) e água, este novo eléctrodo permitiu obter uma resposta electroquímica da CBZ, consideravelmente superior ao eléctrodo não modificado. Utilizando a voltametria de varrimento linear e as condições experimentais consideradas óptimas, o eléctrodo nanoestruturado permitiu obter uma relação linear entre o sinal medido e a concentração da CBZ no intervalo 0.13- 1.60 M (30.7- 378 g -1), com os limites de detecção e quantificação mais baixos, até à data reportados com métodos electroquímicos (0.04 e 0.14M, respectivamente). O eléctrodo modificado foi aplicado na quantificação da CBZ, em formulações farmacêuticas, em águas naturais tratadas e em amostras de águas residuais, ambas dopadas, obtendo-se taxas de recuperação consideravelmente elevadas (100.6%, 98.0%,95.8%, respectivamente). Os resultados obtidos, na análise da CBZ em amostras ambientais, com o eléctrodo modificado, foram comparados com resultados obtidos por HPLC-UV e LC­ ESI-MS/MS, validando o método electroquímico desenvolvido neste trabalho. ABSTRACT: The aim of this work was to develop a new electrochemical method for the quantification of carbamazepine (CBZ) in contaminated waters. ln this study, four voltammetric methods were used: cyclic voltammetry, linear sweep voltammetry, square wave voltammetry and differential pulse voltammetry. the working electrodes used were the hanging mercury drop electrode (HMDE), the classical glassy carbon electrode (GCE), and a glassy carbon electrode modified with a film of multi-walled carbon nanotubes (MWCNls). Using HMDE, the reduction of CBZ was studied in the cathodic potential region. the CGE sensors, with or without modification, allowed the study of CBZ oxidation in the anodic potential region. ln the tested conditions, the results obtained for the quantification of CBZ using the HMDE sensor were not very satisfactory, especially when more complex samples were analysed. When the MWCNls-dihexadecyl hydrogen phosphate (DHP) film­ coated GCE was used for the voltammetric determination of CBZ, the results obtained showed that this modified electrode exhibits excellent enhancement effects on the electrochemical oxidation of CBZ. the oxidation peak current of CBZ at this film­ modified electrode increased significantly, when compared with that at a bare glassy carbon electrode. The enhanced electrooxidation and voltammetry of CBZ at the surface of MWCNTs-DHP film coated GCE in phosphate buffer solution (pH 6.71) was attributed to the unique properties of MWCNTs such as large specific surface area and strong adsorptive properties providing more reaction sites. The proposed method was applied to the quantification of CBZ in pharmaceutical formulations, drinking water and wastewater samples with good recoveries and low limits of detection and quantification (0.04 and 0.14 M, respectively), and was positively compared with chromatographic techniques usually used in the quantification of pharmaceutical compounds in environmental samples. HPLC-UV and LC-ESI-MS/MS were also used in the quantification of CBZ in pharmaceutical formulations and wastewater samples to prove the importance and accuracy of his voltammetric method.