988 resultados para analysis of contents


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite steel-concrete structures experience non-linear effects which arise from both instability-related geometric non-linearity and from material non-linearity in all of their component members. Because of this, conventional design procedures cannot capture the true behaviour of a composite frame throughout its full loading range, and so a procedure to account for those non-linearities is much needed. This paper therefore presents a numerical procedure capable of addressing geometric and material non-linearities at the strength limit state based on the refined plastic hinge method. Different material non-linearity for different composite structural components such as T-beams, concrete-filled tubular (CFT) and steel-encased reinforced concrete (SRC) sections can be treated using a routine numerical procedure for their section properties in this plastic hinge approach. Simple and conservative initial and full yield surfaces for general composite sections are proposed in this paper. The refined plastic hinge approach models springs at the ends of the element which are activated when the surface defining the interaction of bending and axial force at first yield is reached; a transition from the first yield interaction surface to the fully plastic interaction surface is postulated based on a proposed refined spring stiffness, which formulates the load-displacement relation for material non-linearity under the interaction of bending and axial actions. This produces a benign method for a beam-column composite element under general loading cases. Another main feature of this paper is that, for members containing a point of contraflexure, its location is determined with a simple application of the method herein and a node is then located at this position to reproduce the real flexural behaviour and associated material non-linearity of the member. Recourse is made to an updated Lagrangian formulation to consider geometric non-linear behaviour and to develop a non-linear solution strategy. The formulation with the refined plastic hinge approach is efficacious and robust, and so a full frame analysis incorporating geometric and material non-linearity is tractable. By way of contrast, the plastic zone approach possesses the drawback of strain-based procedures which rely on determining plastic zones within a cross-section and which require lengthwise integration. Following development of the theory, its application is illustrated with a number of varied examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an accurate and robust geometric and material nonlinear formulation to predict structural behaviour of unprotected steel members at elevated temperatures. A fire analysis including large displacement effects for frame structures is presented. This finite element formulation of beam-column elements is based on the plastic hinge approach to model the elasto-plastic strain-hardening material behaviour. The Newton-Raphson method allowing for the thermal-time dependent effect was employed for the solution of the non-linear governing equations for large deflection in thermal history. A combined incremental and total formulation for determining member resistance is employed in this nonlinear solution procedure for the efficient modeling of nonlinear effects. Degradation of material strength with increasing temperature is simulated by a set of temperature-stress-strain curves according to both ECCS and BS5950 Part 8, which implicitly allows for creep deformation. The effects of uniform or non-uniform temperature distribution over the section of the structural steel member are also considered. Several numerical and experimental verifications are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical procedure based on the plastic hinge concept for study of the structural behaviour of steel framed structures exposed to fire is described. Most previous research on fire analysis considered the structural performance due to rising temperature. When strain reversal occurs during the cooling phase, the stress–strain curve is different. The plastic deformation is incorporated into the stress–strain curve to model the strain reversal effect in which unloading under elastic behaviour is allowed. This unloading response is traced by the incremental–iterative Newton–Raphson method. The mechanical properties of the steel member in the present fire analysis follows both Eurocode 3 Part 1.2 and BS5950 Part 8, which implicitly allow for thermal creep deformation. This paper presents an efficient fire analysis procedure for predicting thermal and cooling effects on an isolated element and a multi-storey frame. Several numerical and experimental examples related to structural behaviour in cooling phase are studied and compared with results obtained by other researchers. The proposed method is effective in the fire safety design and analysis of a building in a real fire scenario. The scope of investigation is of great significance since a large number of rescuers would normally enter a fire site as soon as the fire is extinguished and during the cooling phase, so a structural collapse can be catastrophic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load-displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included. The accuracy and efficiency of the technique is verified by comparisons with a number of plane and spatial structures, whose structural response has been reported in independent studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed procedure for second-order analysis has been coded in the newest Eurocode 3 and the Hong Kong steel code (2005). The effective length method has been noted to be inapplicable to analysis of shallow domes of imperfect members exhibiting snap-through buckling, to portals with leaning columns and others. On the other hand, the advanced analysis is not limited to buckling design of these structures. This paper demonstrates its application to the design of a simple plane sway portal and a three diminsional non-sway steel building. The results by the advanced analysis and the first-order linear analysis are compared and the technique for practical second-order analysis steel structures is described. It is observed that the use of a straight element by itself cannot model the buckling resistance of columns governed by different buckling curves for hot-rolled and cold-formed sections of various shapes like I, H, hollow etc. Also the curvature of the conventional cubic Hermite element is not varied by the external axial force and thus it cannot simulate the response of a buckling column. Thus its use for second-order analysis is basically unacceptable. A technique for additional checking of beams undergoing lateral-torsional buckling is also suggested making the advanced analysis a complete design tool for conventional steel frames.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper emphasizes material nonlinear effects on composite beams with recourse to the plastic hinge method. Numerous combinations of steel and concrete sections form arbitrary composite sections. Secondly, the material properties of composite beams vary remarkably across its section from ductile steel to brittle concrete. Thirdly, concrete is weak in tension, so composite section changes are dependent on load distribution. To this end, the plastic zone approach is convenient for inelastic analysis of composite sections that can evaluate member resistance, including material nonlinearities, by routine numerical integration with respect to every fiber across the composite section. As a result, many researchers usually adopt the plastic zone approach for numerical inelastic analyses of composite structures. On the other hand, the plastic hinge method describes nonlinear material behaviour of an overall composite section integrally. Consequently, proper section properties for use in plastic hinge spring stiffness are required to represent the material behaviour across the arbitrary whole composite section. In view of numerical efficiency and convergence, the plastic hinge method is superior to the plastic zone method. Therefore, based on the plastic hinge approach, how to incorporate the material nonlinearities of the arbitrary composite section into the plastic hinge stiffness formulation becomes a prime objective of the present paper. The partial shear connection in this paper is by virtue of the effective flexural rigidity as AISC 1993 [American Institute of Steel Construction (AISC). Load and resistance factor design specifications. 2nd ed., Chicago; 1993]. Nonlinear behaviour of different kinds of composite beam is investigated in this paper, including two simply supported composite beams, a cantilever and a two span continuous composite beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dengue virus (DENV) transmission in Australia is driven by weather factors and imported dengue fever (DF) cases. However, uncertainty remains regarding the threshold effects of high-order interactions among weather factors and imported DF cases and the impact of these factors on autochthonous DF. A time-series regression tree model was used to assess the threshold effects of natural temporal variations of weekly weather factors and weekly imported DF cases in relation to incidence of weekly autochthonous DF from 1 January 2000 to 31 December 2009 in Townsville and Cairns, Australia. In Cairns, mean weekly autochthonous DF incidence increased 16.3-fold when the 3-week lagged moving average maximum temperature was <32 °C, the 4-week lagged moving average minimum temperature was ≥24 °C and the sum of imported DF cases in the previous 2 weeks was >0. When the 3-week lagged moving average maximum temperature was ≥32 °C and the other two conditions mentioned above remained the same, mean weekly autochthonous DF incidence only increased 4.6-fold. In Townsville, the mean weekly incidence of autochthonous DF increased 10-fold when 3-week lagged moving average rainfall was ≥27 mm, but it only increased 1.8-fold when rainfall was <27 mm during January to June. Thus, we found different responses of autochthonous DF incidence to weather factors and imported DF cases in Townsville and Cairns. Imported DF cases may also trigger and enhance local outbreaks under favorable climate conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To investigate and describe the relationship between indigenous Australian populations, residential aged care services, and community-onset Staphylococcus aureus bacteremia (SAB) among patients admitted to public hospitals in Queensland, Australia. DESIGN Ecological study. METHODS We used administrative healthcare data linked to microbiology results from patients with SAB admitted to Queensland public hospitals from 2005 through 2010 to identify community-onset infections. Data about indigenous Australian population and residential aged care services at the local government area level were obtained from the Queensland Office of Economic and Statistical Research. Associations between community-onset SAB and indigenous Australian population and residential aged care services were calculated using Poisson regression models in a Bayesian framework. Choropleth maps were used to describe the spatial patterns of SAB risk. RESULTS We observed a 21% increase in relative risk (RR) of bacteremia with methicillin-susceptible S. aureus (MSSA; RR, 1.21 [95% credible interval, 1.15-1.26]) and a 24% increase in RR with nonmultiresistant methicillin-resistant S. aureus (nmMRSA; RR, 1.24 [95% credible interval, 1.13-1.34]) with a 10% increase in the indigenous Australian population proportion. There was no significant association between RR of SAB and the number of residential aged care services. Areas with the highest RR for nmMRSA and MSSA bacteremia were identified in the northern and western regions of Queensland. CONCLUSIONS The RR of community-onset SAB varied spatially across Queensland. There was increased RR of community-onset SAB with nmMRSA and MSSA in areas of Queensland with increased indigenous population proportions. Additional research should be undertaken to understand other factors that increase the risk of infection due to this organism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies suggest that genetic and environmental factors do not account for all the schizophrenia risk and epigenetics also plays a role in disease susceptibility. DNA methylation is a heritable epigenetic modification that can regulate gene expression. Genome-Wide DNA methylation analysis was performed on post-mortem human brain tissue from 24 patients with schizophrenia and 24 unaffected controls. DNA methylation was assessed at over 485 000 CpG sites using the Illumina Infinium Human Methylation450 Bead Chip. After adjusting for age and post-mortem interval (PMI), 4 641 probes corresponding to 2 929 unique genes were found to be differentially methylated. Of those genes, 1 291 were located in a CpG island and 817 were in a promoter region. These include NOS1, AKT1, DTNBP1, DNMT1, PPP3CC and SOX10 which have previously been associated with schizophrenia. More than 100 of these genes overlap with a previous DNA methylation study of peripheral blood from schizophrenia patients in which 27 000 CpG sites were analysed. Unsupervised clustering analysis of the top 3 000 most variable probes revealed two distinct groups with significantly more people with schizophrenia in cluster one compared to controls (p = 1.74x10-4). The first cluster was composed of 88% of patients with schizophrenia and only 12% controls while the second cluster was composed of 27% of patients with schizophrenia and 73% controls. These results strongly suggest that differential DNA methylation is important in schizophrenia etiology and add support for the use of DNA methylation profiles as a future prognostic indicator of schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most persistent organic pollutants (POPs) like polychlorinated biphenyls (PCBs), a range of polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs) are readily absorbed (via the ingestion and inhalation) and accumulate in fatty tissue, including adipose tissue and human milk [1]. Health effects related to exposure to these chemicals may include neurological effects, altered functioning of the nervous system and/or endocrine disruption [2-4]. The burden of environmental disease is recognized as much higher for children than adults, especially in young children under 5 years of age worldwide [5]. There is increased concern regarding the environmental impact on the health of children who have been disproportionately affected by environmental problems. For example they may be subjected to relatively higher exposure, have greater physiological susceptibility and/or suffer more extreme consequences due to growth [6-9]. It is therefore worthwhile to assess the correlation between burden of disease and exposure to xenobiotic chemical pollutants like POPs. Such assessment may provide guidance for legislative changes regarding chemical bans and give reliable advice to parents including lactating mothers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Appropriate disposition of emergency department (ED) patients with chest pain is dependent on clinical evaluation of risk. A number of chest pain risk stratification tools have been proposed. The aim of this study was to compare the predictive performance for major adverse cardiac events (MACE) using risk assessment tools from the National Heart Foundation of Australia (HFA), the Goldman risk score and the Thrombolysis in Myocardial Infarction risk score (TIMI RS). Methods: This prospective observational study evaluated ED patients aged ≥30 years with non-traumatic chest pain for which no definitive non-ischemic cause was found. Data collected included demographic and clinical information, investigation findings and occurrence of MACE by 30 days. The outcome of interest was the comparative predictive performance of the risk tools for MACE at 30 days, as analyzed by receiver operator curves (ROC). Results: Two hundred eighty-one patients were studied; the rate of MACE was 14.1%. Area under the curve (AUC) of the HFA, TIMI RS and Goldman tools for the endpoint of MACE was 0.54, 0.71 and 0.67, respectively, with the difference between the tools in predictive ability for MACE being highly significant [chi2 (3) = 67.21, N = 276, p < 0.0001]. Conclusion: The TIMI RS and Goldman tools performed better than the HFA in this undifferentiated ED chest pain population, but selection of cutoffs balancing sensitivity and specificity was problematic. There is an urgent need for validated risk stratification tools specific for the ED chest pain population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of office building retrofit projects is increasing. These projects are characterised by processes which have a close relationship with waste generation and therefore demand a high level of waste management. In a preliminary study reported separately, we identified seven critical factors of on-site waste generation in office building retrofit projects. Through semi-structured interviews and Interpretive Structural Modelling, this research further investigated the interrelationships among these critical waste factors, to identify each factor’s level of influence on waste generation and propose effective solutions for waste minimization. “Organizational commitment” was identified as the fundamental issue for waste generation in the ISM system. Factors related to plan, design and construction processes were found to be located in the middle levels of the ISM model but still had significant impacts on the system as a whole. Based on the interview findings and ISM analysis results, some practical solutions were proposed for waste minimization in building retrofit projects: (1) reusable and adaptable fit-out design; (2) a system for as-built drawings and building information; (3) integrated planning for retrofitting work process and waste management; and (4) waste benchmarking development for retrofit projects. This research will provide a better understanding of waste issues associated with building retrofit projects and facilitate enhanced waste minimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a planetary rover to successfully traverse across unstructured terrain autonomously, one of the major challenges is to assess its local traversability such that it can plan a trajectory to achieve its mission goals efficiently while minimising risk to the vehicle itself. This paper aims to provide a comparative study on different approaches for representing the geometry of Martian terrain for the purpose of evaluating terrain traversability. An accurate representation of the geometric properties of the terrain is essential as it can directly affect the determination of traversability for a ground vehicle. We explore current state-of-the-art techniques for terrain estimation, in particular Gaussian Processes (GP) in various forms, and discuss the suitability of each technique in the context of an unstructured Martian terrain. Furthermore, we present the limitations of regression techniques in terms of spatial correlation and continuity assumptions, and the impact on traversability analysis of a planetary rover across unstructured terrain. The analysis was performed on datasets of the Mars Yard at the Powerhouse Museum in Sydney, obtained using the onboard RGB-D camera.