918 resultados para additive partitioning
Resumo:
Friction force generated in lubricated cutting of steel is experimentally estimated by recording the tangential force experienced by the spherical face of a pin rubbing against a freshly cut surface. The pin and the cutting tool are both submerged in the lubricant and the pin is situated on the cut-track to record the force. The recording shows an instantaneous achievement of a peak in the force curve followed by a decline in time to a steady state value. The peak and not the steady state friction was found to be sensitive to the structure of the hydrocarbon and addition of additive to the oil. The configuration was designed and tested to demonstrate the influence of a reaction film which develops during cutting, on cutting tool friction. Given the strong correlation between the peak friction and the existence of a tribofilm in the cutting zone, the configuration is used to determine the lower limit of a cutting speed regime, which marks the initiation of lubricant starvation, in cutting of steel using an emulsion as a cutting fluid. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In a complex multitrophic plant-animal interaction system in which there are direct and indirect interactions between species, comprehending the dynamics of these multiple partners is very important for an understanding of how the system is structured. We investigated the plant Ficus racemosa L. (Moraceae) and its community of obligatory mutualistic and parasitic fig wasps (Hymenoptera: Chalcidoidea) that develop within the fig inflorescence or syconium, as well as their interaction with opportunistic ants. We focused on temporal resource partitioning among members of the fig wasp community over the development cycle of the fig syconia during which wasp oviposition and development occur and we studied the activity rhythm of the ants associated with this community. We found that the seven members of the wasp community partitioned their oviposition across fig syconium development phenology and showed interspecific variation in activity across the day-night cycle. The wasps presented a distinct sequence in their arrival at fig syconia for oviposition, with the parasitoid wasps following the galling wasps. Although fig wasps are known to be largely diurnal, we documented night oviposition in several fig wasp species for the first time. Ant activity on the fig syconia was correlated with wasp activity and was dependent on whether the ants were predatory or trophobiont-tending species; only numbers of predatory ants increased during peak arrivals of the wasps.
Resumo:
Extraction of formant information from linear-prediction phase spectra is proposed. It is shown that the derivative of phase spectrum gives reliable formant information. Since the phase spectra for several resonators in cascade are additive, the resonance peaks are additive in the derivative of the phase spectrum unlike in the magnitude spectrum and hence the problem of identifying merged peaks is very easily solved by this method. Application of the method is illustrated through examples of linear-prediction spectra obtained for simulated models and for actural speech segments.
Resumo:
The k-colouring problem is to colour a given k-colourable graph with k colours. This problem is known to be NP-hard even for fixed k greater than or equal to 3. The best known polynomial time approximation algorithms require n(delta) (for a positive constant delta depending on k) colours to colour an arbitrary k-colourable n-vertex graph. The situation is entirely different if we look at the average performance of an algorithm rather than its worst-case performance. It is well known that a k-colourable graph drawn from certain classes of distributions can be ii-coloured almost surely in polynomial time. In this paper, we present further results in this direction. We consider k-colourable graphs drawn from the random model in which each allowed edge is chosen independently with probability p(n) after initially partitioning the vertex set into ii colour classes. We present polynomial time algorithms of two different types. The first type of algorithm always runs in polynomial time and succeeds almost surely. Algorithms of this type have been proposed before, but our algorithms have provably exponentially small failure probabilities. The second type of algorithm always succeeds and has polynomial running time on average. Such algorithms are more useful and more difficult to obtain than the first type of algorithms. Our algorithms work as long as p(n) greater than or equal to n(-1+is an element of) where is an element of is a constant greater than 1/4.
Resumo:
Condensation from the vapor state is an important technique for the preparation of nanopowders. Levitational gas condensation is one such technique that has a unique ability of attaining steady state. Here, we present the results of applying this technique to an iron-copper alloy (96Fe-4Cu). A qualitative model of the process is proposed to understand the process and the characteristics of resultant powder. A phase diagram of the alloy system in the liquid-vapor region was calculated to help understand the course of condensation, especially partitioning and coring during processing. The phase diagram could not explain coring in view of the simultaneous occurrence of solidification and the fast homogenization through diffusion in the nanoparticles; however, it could predict the very low levels of copper observed in the levitated drop. The enrichment of copper observed near the surface of the powder was considered to be a manifestation of the lower surface energy of copper compared with that of iron. Heat transfer calculations indicated that most condensed particles can undergo solidification even when they are still in the proximity of the levitated drop. It helped us to predict the temperature and the cooling rate of the powder particles as they move away from the levitated drop. The particles formed by the process seem to be single domain, single crystals that are magnetic in nature. They, thus, can agglomerate by forming a chain-like structure, which manifests as a three-dimensional network enclosing a large unoccupied space, as noticed in scanning electron microscopy and transmission electron microscopy studies. This also explains the observed low packing density of the nanopowders.
Resumo:
Addition of trimethylammonium perchlorate to potassium perchlorate (KP) catalyzes its thermal decomposition. However, although the additive sensitises KP-PU propellant decomposition, its combustion is desensitised. The observed effects have been explained in terms of the role played by the early formation of potassium chloride.
Resumo:
Sydämen vajaatoiminta on erilaisista sydän- ja verisuonisairauksista aiheutuva monimuotoinen oireyhtymä, johon sairastuneiden ja kuolleiden potilaiden määrä on yhä suuri. Sen patofysiologiaan voi kuulua muun muassa sympaattisen hermoston ja reniini-angiotensiini-aldosteroni–järjestelmän aktiivisuutta, huonosti supistuva vasen kammio, sydämen uudelleenmuokkautumista, muutoksia [Ca2+]i:n säätelyssä, kardiomyosyyttien apoptoosia sekä systeeminen tulehdustila. Johonkin osaan sairauden patofysiologiasta eivät nykyiset lääkehoidot riittävästi vaikuta. Klassiset inotroopit lisäävät sydämen supistusvireyttä kasvattamalla solunsisäistä Ca2+-pitoisuutta, mutta ne lisäävät rytmihäiriöriskiä, sydämen hapenkulutusta sekä heikentävät ennustetta. Levosimendaani, kalsiumherkistäjä, lisää sydämen supistusvoimaa [Ca2+]i:ta kohottamatta herkistämällä sydänlihaksen kalsiumin vaikutuksille. Lisäksi levosimendaani avaa sarkolemmaalisia ja mitokondriaalisia K+-kanavia, jotka välittävät vasodilataatiota ja kardioprotektiota. Suurilla annoksilla levosimendaani on selektiivinen PDE3-estäjä. Levosimendaania suositellaan äkillisesti pahentuneen sydämen vajaatoiminnan hoitoon, mutta muitakin lupaavia indikaatioita sille on keksitty. Esimerkiksi kroonisesti annosteltu oraalinen levosimendaani on suojannut kardiovaskulaarijärjestelmää ja parantanut selviytymistä in vivo. Erikoistyössä selvitettiin kroonisesti annostellun oraalisen levosimendaanin, valsartaanin ja näiden kombinaatioterapian vaikutuksia selviytymiseen, verenpaineeseen sekä sydämen hypertrofioitumiseen Dahlin suolaherkillä (Dahl/Rapp) rotilla. Levosimendaanin suojavaikutus ilmeni vähäisempänä kuolleisuutena, mutta ero ei ollut tilastollisesti merkitsevä kontrolliryhmään nähden. Kombinaatioterapia suojasi rottia kardiovaskulaarikuolleisuudelta ja vähensi todennäköisesti verenpaineesta riippuvaisesti sydämen hypertofioitumista niin sydän/kehonpaino–suhteen kuin ultraäänitutkimuksenkin perusteella arvioituna paremmin kuin kumpikaan lääke monoterapiana. Lääkekombinaatio alensi additiivisesti hypertensiota kaikissa mittauspisteissä. Sydämen systolista toimintaa levosimendaani kohensi vain vähäisesti. Dahl/Rapp-rotille kehittyikin pääosin hypertension indusoimaa diastolista sydämen vajaatoimintaa kohonneen IVRT-arvon perusteella. Levosimendaani sekä monoterapiana että kombinaatioterapiana valsartaanin kanssa vähensi sydämen diastolista vajaatoimintaa.
Resumo:
The study presents a theory of utility models based on aspiration levels, as well as the application of this theory to the planning of timber flow economics. The first part of the study comprises a derivation of the utility-theoretic basis for the application of aspiration levels. Two basic models are dealt with: the additive and the multiplicative. Applied here solely for partial utility functions, aspiration and reservation levels are interpreted as defining piecewisely linear functions. The standpoint of the choices of the decision-maker is emphasized by the use of indifference curves. The second part of the study introduces a model for the management of timber flows. The model is based on the assumption that the decision-maker is willing to specify a shape of income flow which is different from that of the capital-theoretic optimum. The utility model comprises four aspiration-based compound utility functions. The theory and the flow model are tested numerically by computations covering three forest holdings. The results show that the additive model is sensitive even to slight changes in relative importances and aspiration levels. This applies particularly to nearly linear production possibility boundaries of monetary variables. The multiplicative model, on the other hand, is stable because it generates strictly convex indifference curves. Due to a higher marginal rate of substitution, the multiplicative model implies a stronger dependence on forest management than the additive function. For income trajectory optimization, a method utilizing an income trajectory index is more efficient than one based on the use of aspiration levels per management period. Smooth trajectories can be attained by squaring the deviations of the feasible trajectories from the desired one.
Resumo:
Eiectroless nickel (EN) deposits obtained from alkaline EN baths employing citrate or glycine as complexing agents and triethanoiamine as an additive are characterized by ESCA. This study reveals that Ni and P in EN are present as Niδ+ and Pδ− species. Besides these, NiO and NiPO4 are present as surface species. They confer passivity on EN and thereby contribute to its corrosion resistance.
Resumo:
Aluminium-silicon alloy, an important material used for the construction of internal combustion engines, exhibit pressure induced distinct regimes of wear and friction; ultra-mild and mild. In this work the alloy is slid lubricated against a spherical steel pin at contact pressures characteristic of the two test regimes, at a very low sliding velocity. In both cases, the friction is controlled at the initial stages of sliding by the abrasion of the steel pin by the protruding silicon particles of the disc. The generation of nascent steel chips helps to breakdown the additive in the oil by a cationic exchange that yields chemical products of benefits to the tribology. The friction is initially controlled by abrasion, but the chemical products gain increasing importance in controlling friction with sliding time. After long times, depending on contact pressure, the chemical products determine sliding friction exclusively. In this paper, a host of mechanical and spectroscopic techniques are used to identify and characterize mechanical damage and chemical changes. Although the basic dissipation mechanisms are the same in the two regimes, the matrix remains practically unworn in the low-pressure ultra-mild wear regime. In the higher pressure regime at long sliding times a small but finite wear rate prevails. Incipient plasticity in the subsurface controls the mechanism of wear.
Resumo:
MNDO geometry optimizations were carried out on a series of symmetrically and unsymmetrically coupled strained ring hydrocarbons, R1-R1 and R1–R2 (R1=methyl, cyclopropyl, 1-bicyclo[1.1.0]butyl, 1-bicyclo[1.1.1]pentyl, prismyl, cubyl, 6-tricyclo [3.1.1.03,6]heptyl, and tetrahedryl groups; R2=methyl and cyclopropyl). The remarkable contraction of the C---C bond connecting the strained rings found experimentally in a few cases was reproduced correctly by the calculations. A linear correlation was found between the bond length shortening and the bond angle widening at the corresponding carbon atoms for all the structures considered. The reduction in C---C bond lengths due to various ring systems is additive. The additivity indicates that inter-ring interactions which effect the central bond length are absent and confirms the common electronic origin of bond contraction in these systems, viz. enhanced s-character in the exocyclic bonds of strained rings.
Resumo:
A local algorithm with local horizon r is a distributed algorithm that runs in r synchronous communication rounds; here r is a constant that does not depend on the size of the network. As a consequence, the output of a node in a local algorithm only depends on the input within r hops from the node. We give tight bounds on the local horizon for a class of local algorithms for combinatorial problems on unit-disk graphs (UDGs). Most of our bounds are due to a refined analysis of existing approaches, while others are obtained by suggesting new algorithms. The algorithms we consider are based on network decompositions guided by a rectangular tiling of the plane. The algorithms are applied to matching, independent set, graph colouring, vertex cover, and dominating set. We also study local algorithms on quasi-UDGs, which are a popular generalisation of UDGs, aimed at more realistic modelling of communication between the network nodes. Analysing the local algorithms on quasi-UDGs allows one to assume that the nodes know their coordinates only approximately, up to an additive error. Despite the localisation error, the quality of the solution to problems on quasi-UDGs remains the same as for the case of UDGs with perfect location awareness. We analyse the increase in the local horizon that comes along with moving from UDGs to quasi-UDGs.
Resumo:
Abstract Background Pubertal timing is a strongly heritable trait, but no single puberty gene has been identified. Thus, the genetic background of idiopathic central precocious puberty (ICPP) is poorly understood. Overall, the genetic modulation of pubertal onset most likely arises from the additive effect of multiple genes, but also monogenic causes of ICPP probably exist, as cases of familial ICPP have been reported. Mutations in KISS1 and KISSR, coding for kisspeptin and its receptor, involved in GnRH secretion and puberty onset, have been suggested causative for monogenic ICPP. Variation in LIN28B was associated with timing of puberty in genome-wide association (GWA) studies. LIN28B is a human ortholog of the gene that controls, through microRNAs, developmental timing in C. elegans. In addition, Lin28a transgenic mice manifest the puberty phenotypes identified in the human GWAS. Thus, both LIN28B and LIN28A may have a role in pubertal development and are good candidate genes for monogenic ICPP. Methods Thirty girls with ICPP were included in the study. ICPP was defined by pubertal onset before 8 yrs of age, and a pubertal LH response to GnRH testing. The coding regions of LIN28B, LIN28A, KISS1, and KISS1R were sequenced. The missense change in LIN28B was also screened in 132 control subjects. Results No rare variants were detected in KISS1 or KISS1R in the 30 subjects with ICPP. In LIN28B, one missense change, His199Arg, was found in one subject with ICPP. However, this variant was also detected in one of the 132 controls. No variation in LIN28A was found. Conclusions We did not find any evidence that mutations in LIN28B or LIN28A would underlie ICPP. In addition, we confirmed that mutations in KISS1 and KISS1R are not a common cause for ICPP.
Resumo:
Clustering is a process of partitioning a given set of patterns into meaningful groups. The clustering process can be viewed as consisting of the following three phases: (i) feature selection phase, (ii) classification phase, and (iii) description generation phase. Conventional clustering algorithms implicitly use knowledge about the clustering environment to a large extent in the feature selection phase. This reduces the need for the environmental knowledge in the remaining two phases, permitting the usage of simple numerical measure of similarity in the classification phase. Conceptual clustering algorithms proposed by Michalski and Stepp [IEEE Trans. PAMI, PAMI-5, 396–410 (1983)] and Stepp and Michalski [Artif. Intell., pp. 43–69 (1986)] make use of the knowledge about the clustering environment in the form of a set of predefined concepts to compute the conceptual cohesiveness during the classification phase. Michalski and Stepp [IEEE Trans. PAMI, PAMI-5, 396–410 (1983)] have argued that the results obtained with the conceptual clustering algorithms are superior to conventional methods of numerical classification. However, this claim was not supported by the experimental results obtained by Dale [IEEE Trans. PAMI, PAMI-7, 241–244 (1985)]. In this paper a theoretical framework, based on an intuitively appealing set of axioms, is developed to characterize the equivalence between the conceptual clustering and conventional clustering. In other words, it is shown that any classification obtained using conceptual clustering can also be obtained using conventional clustering and vice versa.
Resumo:
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic algorithm to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.