961 resultados para ab-initio calculations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tutkielman tavoitteena oli tutkia toimintolaskennan soveltuvuutta tuotekehitys-kustannusten selvittämiseen ja kohdistamiseen tuotteiden katelaskennassa. Tarkoitus oli selvittää erityisesti laskennan hyödyt kuorma-autotehtaan kannalta ja rakentaa yritykselle valmis malli tuotekehityskustannusten toimintopohjaiselle laskennalle. Tutkielma on luonteeltaan konstruktiivinen case-tutkimus. Yritykselle pyrittiin teorian pohjalta luomaan käytännön ongelmaan ratkaisu rakentamalla toimintolaskentamalli, jolla yrityksen tuotekehityksen kustannukset pystytään mahdollisimman hyvin jakamaan tuotteille. Mallin rakennuksen myötä saavutettiin selkeät periaatteet kustannusten kohdistamiseen kuorma-autoille. Laskennan avulla saatujen tulosten perusteella saatiin tärkeää tuotekehitystä koskevaa tietoa, jota aikaisemmin ei oltu yrityksessä pystytty hyödyntämään tuotteiden kustannuslaskennassa. Tuloksia on mahdollisuus hyödyntää sekä operatiivisessa että strategisessa päätöksenteossa. Tutkimuksen tuloksia on tarkasteltava tieteellisesti suhteellisen suppeana, juuri kyseiseen yritykseen soveltuvana ratkaisuna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the numerical efficiency of solving the self-consistent field theory (SCFT) for periodic block-copolymer morphologies by combining the spectral method with Anderson mixing. Using AB diblock-copolymer melts as an example, we demonstrate that this approach can be orders of magnitude faster than competing methods, permitting precise calculations with relatively little computational cost. Moreover, our results raise significant doubts that the gyroid (G) phase extends to infinite $\chi N$. With the increased precision, we are also able to resolve subtle free-energy differences, allowing us to investigate the layer stacking in the perforated-lamellar (PL) phase and the lattice arrangement of the close-packed spherical (S$_{cp}$) phase. Furthermore, our study sheds light on the existence of the newly discovered Fddd (O$^{70}$) morphology, showing that conformational asymmetry has a significant effect on its stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first theoretical results of core-valence correlation effects are presented for the infrared wavenumbers and intensities of the BF3 and BCl3 molecules, using (double- and triple-zeta) Dunning core-valence basis sets at the CCSD(T) level. The results are compared with those calculated in the frozen core approximation with standard Dunning basis sets at the same correlation level and with the experimental values. The general conclusion is that the effect of core-valence correlation is, for infrared wavenumbers and intensities, smaller than the effect of adding augmented diffuse functions to the basis set, e.g., cc-pVTZ to aug-cc-pVTZ. Moreover, the trends observed in the data are mainly related to the augmented functions rather than the core-valence functions added to the basis set. The results obtained here confirm previous studies pointing out the large descrepancy between the theoretical and experimental intensities of the stretching mode for BCl3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. TWA22 was initially regarded as a member of the TW Hydrae association (TWA). In addition to being one of the youngest (approximate to 8 Myr) and nearest (approximate to 20 pc) stars to Earth, TWA22 has proven to be very interesting after being resolved as a tight, very low-mass binary. This binary can serve as a very useful dynamical calibrator for pre-main sequence evolutionary models. However, its membership in the TWA has been recently questioned despite due to the lack of accurate kinematic measurements. Aims. Based on proper motion, radial velocity, and trigonometric parallax measurements, we aim here to re-analyze the membership of TWA22 to young, nearby associations. Methods. Using the ESO NTT/SUSI2 telescope, we observed TWA22 AB during 5 different observing runs over 1.2 years to measure its trigonometric parallax and proper motion. This is a part of a larger project measuring trigonometric parallaxes and proper motions of most known TWA members at a sub-milliarcsec level. HARPS at the ESO 3.6 m telescope was also used to measure the system's radial velocity over 2 years. Results. We report an absolute trigonometric parallax of TWA22 AB, pi = 57.0 +/- 0.7 mas, corresponding to a distance 17.5 +/- 0.2 pc from Earth. Measured proper motions of TWA 22AB are mu(alpha) cos(delta) = -175.8 +/- 0.8 mas/yr and mu delta = -21.3 +/- 0.8 mas/yr. Finally, from HARPS measurements, we obtain a radial velocity V(rad) = 14.8 +/- 2.1 km s(-1). Conclusions. A kinematic analysis of TWA22 AB space motion and position implies that a membership of TWA22 AB to known young, nearby associations can be excluded except for the beta Pictoris and TW Hydrae associations. Membership probabilities based on the system's Galactic space motion and/or the trace-back technique support a higher chance of being a member to the beta Pictoris association. Membership of TWA22 in the TWA cannot be fully excluded because of large uncertainties in parallax measurements and radial velocities and to the uncertain internal velocity dispersion of its members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present parameter-free calculations of electronic properties of InGaN, InAlN, and AlGaN alloys. The calculations are based on a generalized quasichemical approach, to account for disorder and composition effects, and first-principles calculations within the density functional theory with the LDA-1/2 approach, to accurately determine the band gaps. We provide precise results for AlGaN, InGaN, and AlInN band gaps for the entire range of compositions, and their respective bowing parameters. (C) 2011 American Institute of Physics. [doi:10.1063/1.3576570]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C(60)(OH)(n)] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke's three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C(60)(OH)(36). Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1, 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C(60)(OH)(24) isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4, 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum plays an important role in catalysis and electrochemistry, and it is known that the direct interaction of oxygen with Pt surfaces can lead to the formation of platinum oxides (PtO(x)), which can affect the reactivity. To contribute to the atomistic understanding of the atomic structure of PtO(x), we report a density functional theory study of the atomic structure of bulk PtO(x) (1 <= x <= 2). From our calculations, we identified a lowest-energy structure (GeS type, space group Pnma) for PtO, which is 0.181 eV lower in energy than the structure suggested by W. J. Moore and L. Pauling [J. Am. Chem. Soc. 63, 1392 (1941)] (PtS type). Furthermore, two atomic structures were identified for PtO(2), which are almost degenerate in energy with the lowest-energy structure reported so far for PtO(2) (CaCl(2) type). Based on our results and analysis, we suggest that Pt and O atoms tend to form octahedron motifs in PtO(x) even at lower O composition by the formation of Pt-Pt bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BE model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations. (C) 1998 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new cyclic octapeptide, cyclo(Ile-Ser-(Gly)Thz-Ile-Thr-(Gly)Thz) (PatN), related to patellamide A, has been synthesized and reacted with copper(II) and base to form mono- and dinuclear complexes. The coordination environments around copper(TI) have been characterized by EPR spectroscopy. The solution structure of the thermodynamically most stable product, a purple dicopper(TI) compound, has been examined by simulating weakly dipole-dipole coupled EPR spectra based upon structural parameters obtained from force field (MM and MD) calculations. The MM-EPR method produces a saddle-shaped structure for [Cu-2(PatN)(OH2)(6)] that is similar to the known solution structure of patellamide A and the known solid-state structure of [Cu-2(AscidH(2))CO3(OH2)(2)]. Compared with the latter, [Cu-2(PatN)] has no carbonate bridge and a significantly flatter topology. The MM-EPR approach to solution-structure determination for paramagnetic metallopeptides may find wide applications to other metallopeptides and metalloproteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically study the Hilbert space structure of two neighboring P-donor electrons in silicon-based quantum computer architectures. To use electron spins as qubits, a crucial condition is the isolation of the electron spins from their environment, including the electronic orbital degrees of freedom. We provide detailed electronic structure calculations of both the single donor electron wave function and the two-electron pair wave function. We adopted a molecular orbital method for the two-electron problem, forming a basis with the calculated single donor electron orbitals. Our two-electron basis contains many singlet and triplet orbital excited states, in addition to the two simple ground state singlet and triplet orbitals usually used in the Heitler-London approximation to describe the two-electron donor pair wave function. We determined the excitation spectrum of the two-donor system, and study its dependence on strain, lattice position, and interdonor separation. This allows us to determine how isolated the ground state singlet and triplet orbitals are from the rest of the excited state Hilbert space. In addition to calculating the energy spectrum, we are also able to evaluate the exchange coupling between the two donor electrons, and the double occupancy probability that both electrons will reside on the same P donor. These two quantities are very important for logical operations in solid-state quantum computing devices, as a large exchange coupling achieves faster gating times, while the magnitude of the double occupancy probability can affect the error rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The class II major histocompatibility complex molecule I-A(g7) is strongly linked to the development of spontaneous insulin-dependent diabetes mellitus (IDDM) in non obese diabetic mice and to the induction of experimental allergic encephalomyelitis in Biozzi AB/H mice. Structurally, it resembles the HLA-DQ molecules associated with human IDDM, in having a non-Asp residue at position 57 in its beta chain. To identify the requirements for peptide binding to I-A(g7) and thereby potentially pathogenic T cell epitopes, we analyzed a known I-A(g7)-restricted T cell epitope, hen egg white lysozyme (HEL) amino acids 9-27. NH2- and COOH-terminal truncations demonstrated that the minimal epitope for activation of the T cell hybridoma 2D12.1 was M12-R21 and the minimum sequence for direct binding to purified I-A(g7) M12-Y20/K13-R21. Alanine (A) scanning revealed two primary anchors for binding at relative positions (p) 6 (L) and 9 (Y) in the HEL epitope. The critical role of both anchors was demonstrated by incorporating L and Y in poly(A) backbones at the same relative positions as in the HEL epitope. Well-tolerated, weakly tolerated, and nontolerated residues were identified by analyzing the binding of peptides containing multiple substitutions at individual positions. Optimally, p6 was a large, hydrophobic residue (L, I, V, M), whereas p9 was aromatic and hydrophobic (Y or F) or positively charged (K, R). Specific residues were not tolerated at these and some other positions. A motif for binding to I-A(g7) deduced from analysis of the model HEL epitope was present in 27/30 (90%) of peptides reported to be I-A(g7)-restricted T cell epitopes or eluted from I-A(g7). Scanning a set of overlapping peptides encompassing human proinsulin revealed the motif in 6/6 good binders (sensitivity = 100%) and 4/13 weak or non-binders (specificity = 70%). This motif should facilitate identification of autoantigenic epitopes relevant to the pathogenesis and immunotherapy of IDDM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.