933 resultados para Yangtze Estuary
Resumo:
Heterotrophic bacteria are important decomposers and transformers of primary production and provide an important link between detritus and the aquatic food web. In seagrass ecosystems, much of seagrass primary production is unavailable through direct grazing and must undergo microbial reworking before seagrass production can enter the aquatic food web. The goal of my dissertation research is to understand better the role heterotrophic bacteria play in carbon cycling in seagrass estuaries. My dissertation research focuses on Florida Bay, a seagrass estuary that has experienced recent changes in carbon source availability, which may have altered ecosystem function. My dissertation research investigates the importance of seagrass, algal and/or cyanobacterial, and allochthonous-derived organic matter to heterotrophic bacteria in Florida Bay and helps establish the carbon base of the estuarine food web. ^ A three tiered approach to the study of heterotrophic bacterial carbon cycling and trophic influences in Florida Bay was used: (1) Spatiotemporal observations of environmental parameters (hydrology, nutrients, extracellular enzymes, and microbial abundance, biomass, and production); (2) Microbial grazing experiments under different levels of top-down and bottom-up influence; and (3) Bulk and compound-specific (bacteria-biomarker fatty acid analysis) stable carbon isotope analysis. ^ In Florida Bay, spatiotemporal patterns in microbial extracellular enzyme (also called ectoenzyme) activities indicate that microorganisms hydrolyzed selectively fractions of the estuarine organic matter pool. The microbial community hydrolyzed organic acids, peptides, and phosphate esters and did not use storage and structural carbohydrates. Organic matter use by heterotrophic bacterioplankton in Florida Bay was co-regulated by bottom-up (resource availability) and top-down (grazer mediated) processes. A bacterial carbon budget based on bacterial, epiphytic, and seagrass production indicates that heterotrophic bacterial carbon cycles are supported primarily through epiphytic production with mixing from seagrass production. Stable carbon isotope analysis of bacteria biomarkers and carbon sources in Florida Bay corroborate the results of the bacterial carbon budget. These results support previous studies of aquatic consumers in Florida Bay, indicating that epiphytic/benthic algal and/or cyanobacterial production with mixing from seagrass-derived organic matter is the carbon base of the seagrass estuarine food web. ^
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
The extraction of climatic signals from time series of biogeochemical data is further complicated in estuarine regions because of the dynamic interaction of land, ocean, and atmosphere. We explored the behavior of potential global and regional climatic stressors to isolate specific shifts or trends, which could have a forcing role on the behavior of biogeochemical descriptors of water quality and phytoplankton biomass from Florida Bay, as an example of a sub-tropical estuary. We performed statistical analysis and subdivided the bay into six zones having unique biogeochemical characteristics. Significant shifts in the drivers were identified in all the chlorophyll a time series. Chlorophyll a concentrations closely follow global forcing and display a generalized declining trend on which seasonal oscillations are superimposed, and it is only interrupted by events of sudden increase triggered by storms which are followed by a relatively rapid return to pre-event conditions trailing again the long-term trend.
Resumo:
From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.
Resumo:
The construction of artificial reefs in the oligotrophic seagrass meadows of central Florida Bay attracted large aggregations of fish and invertebrates, and assays of nutrient availability indicated increases in availability of nutrients to sediment microalgae, periphyton, and seagrasses around reefs. An average of 37.8 large (> 10 cm) mobile animals were observed on each small artificial reef. The dominant fish species present was the gray snapper (Lutjanus griseus Linnaeus, 1758). Four yrs after the establishment of the artificial reefs, microphytobenthos abundance was twice as high in reef plots (1.7 ± 0.1 μg chl-a cm-2) compared to control plots (0.9 ± 0.1 μg chl-a cm-2). The accumulation of periphyton on glass periphytometers was four times higher in artificial reef plots (200.1 ± 45.8 mg chl-a m-2) compared to control plots (54.8 ± 6.8 mg chl-a m-2). The seagrass beds surrounding the artificial reefs changed rapidly, from a sparse Thalassia testudinum (Banks & Soland. ex König) dominated community, which persisted at control plots, to a community dominated by Halodule wrightii (Ascherson). Such changes mirror the changes induced in experimentally fertilized seagrass beds in Florida, strongly suggesting that the aggregations of animals attracted by artificial reefs concentrated nutrients in this oligotrophic seascape, favoring the growth of fast-growing primary producers like microphytobenthos and periphyton, and changing the competitively dominant seagrass from slow-growing T. testudinum to faster-growing H. wrightii in the vicinity of the reefs.
Resumo:
Variation and uncertainty in estimated evaporation was determined over time and between two locations in Florida Bay, a subtropical estuary. Meteorological data were collected from September 2001 to August 2002 at Rabbit Key and Butternut Key within the Bay. Evaporation was estimated using both vapor flux and energy budget methods. The results were placed into a long-term context using 33 years of temperature and rainfall data collected in south Florida. Evaporation also was estimated from this long-term data using an empirical formula relating evaporation to clear sky solar radiation and air temperature. Evaporation estimates for the 12-mo period ranged from 144 to 175 cm yr21, depending on location and method, with an average of 163 cm yr21 (6 9%). Monthly values ranged from 9.2 to 18.5 cm, with the highest value observed in May, corresponding with the maximum in measured net radiation. Uncertainty estimates derived from measurement errors in the data were as much as 10%, and were large enough to obscure differences in evaporation between the two sites. Differences among all estimates for any month indicate the overall uncertainty in monthly evaporation, and ranged from 9% to 26%. Over a 33-yr period (1970–2002), estimated annual evaporation from Florida Bay ranged from 148 to 181 cm yr21, with an average of 166 cm yr21. Rainfall was consistently lower in Florida Bay than evaporation, with a long-term average of 106 cm yr21. Rainfall considered alone was uncorrelated with evaporation at both monthly and annual time scales; when the seasonal variation in clear sky radiation was also taken into account both net radiation and evaporation were significantly suppressed in months with high rainfall.
Resumo:
We used longline fishing to determine the effects of distance from the ocean, season, and short-term variation in abiotic conditions on the abundance of juvenile bull sharks (Carcharhinus leucas) in an estuary of the Florida Everglades, U.S.A. Logistic regression revealed that young-of-the-year sharks were concentrated at a protected site 20 km upstream and were present in greater abundance when dissolved oxygen (DO) levels were high. For older juvenile sharks (age 1+), DO levels had the greatest influence on catch probabilities followed by distance from the ocean; they were most likely to be caught at sites with .3.5 mg L21 DO and on the main branch of the river 20 km upstream. Salinity had a relatively small effect on catch rates and there were no seasonal shifts in shark distribution. Our results highlight the importance of considering DO as a possible driver of top predator distributions in estuaries, even in the absence of hypoxia. In Everglades estuaries hydrological drivers that affect DO levels (e.g., groundwater discharge, modification of primary productivity through nutrient fluxes) will be important in determining shark distributions, and the effects of planned ecosystem restoration efforts on bull sharks will not simply be mediated by changing salinity regimes and the location of the oligohaline zone. More generally, variation in DO levels could structure the nature and spatiotemporal pattern of top predator effects in the coastal Everglades, and other tropical and subtropical estuaries, because of interspecific variation in reliance on DO within the top predator guild.
Patterns of nutrient exchange in a riverine mangrove forest in the Shark River Estuary, Florida, USA
Resumo:
This study aimed to evaluate tidal and seasonal variations in concentrations and fluxes of nitrogen (NH4 +, NO2+NO3, total nitrogen) and phosphorus (soluble reactive phosphorus, total phosphorus) in a riverine mangrove forest using the flume technique during the dry (May, December 2003) and rainy (October 2003) seasons in the Shark River Estuary, Florida. Tidal water temperatures during the sampling period were on average 29.4 (± 0.4) oC in May and October declining to 20 oC (± 4) in December. Salinity values remained constant in May (28 ± 0.12 PSU), whereas salinity in October and December ranged from 6‒21 PSU and 9‒25 PSU, respectively. Nitrate + nitrite (N+N) and NH4+ concentrations ranged from 0.0 to 3.5 μM and from 0 to 4.8 μM throughout the study period, respectively. Mean TN concentrations in October and December were 39 (±0.8) μM and 37 (±1.5) μM, respectively. SRP and N+N concentrations in the flume increased with higher frequency in flooding tides. TP concentrations ranged between 0.2‒2.9 μM with higher concentrations in the dry season than in the rainy season. Mean concentrations were <1. 5 μM during the sampling period in October (0.75 ± 0.02) and December (0.76 ± 0.01), and were relatively constant in both upstream and downstream locations of the flume. Water residence time in the flume (25 m2) was relatively short for any nutrient exchange to occur between the water column and the forest floor. However, the distinct seasonality in nutrient concentrations in the flume and adjacent tidal creek indicate that the Gulf of Mexico is the main source of SRP and N+N into the mangrove forest.
Resumo:
Using high-resolution measures of aquatic ecosystem metabolism and water quality, we investigated the importance of hydrological inputs of phosphorus (P) on ecosystem dynamics in the oligotrophic, P-limited coastal Everglades. Due to low nutrient status and relatively large inputs of terrestrial organic matter, we hypothesized that the ponds in this region would be strongly net heterotrophic and that pond gross primary production (GPP) and respiration (R) would be the greatest during the “dry,” euhaline estuarine season that coincides with increased P availability. Results indicated that metabolism rates were consistently associated with elevated upstream total phosphorus and salinity concentrations. Pulses in aquatic metabolism rates were coupled to the timing of P supply from groundwater upwelling as well as a potential suite of hydrobiogeochemical interactions. We provide evidence that freshwater discharge has observable impacts on aquatic ecosystem function in the oligotrophic estuaries of the Florida Everglades by controlling the availability of P to the ecosystem. Future water management decisions in South Florida must include the impact of changes in water delivery on downstream estuaries.
Resumo:
We studied the role of photochemical and microbial processes in contributing to the transformation of dissolved organic matter (DOM) derived from various plants that dominate the Florida Everglades. Plant-derived DOM leachate samples were exposed to photochemical and microbial degradation and the optical, chemical, and molecular weight characteristics measured over time. Optical parameters such as the synchronous fluorescence intensity between 270 and 290 nm (Fnpeak I), a strong indicator of protein and/or polyphenol content, decreased exponentially in all plant leachate samples, with microbial decay constants ranging from 21.0 d21 for seagrass to 20.11 d21 for mangrove (half-life [t1/2] 5 0.7–6.3 d). Similar decreases in polyphenol content and dissolved organic carbon (DOC) concentration also occurred but were generally an order of magnitude lower or did not change significantly over time. The initial molecular weight composition was reflected in the rate of Fnpeak I decay and suggests that plantderived DOM with a large proportion of high molecular weight structures, such as seagrass derived DOM, contain high concentrations of easily microbially degradable proteinaceous components. For samples exposed to extended simulated solar radiation, polyphenol and Fnpeak I photochemical decay constants were on average 20.7 d21 (t1/2 1.0 d). Our data suggest that polyphenol structures of plant-derived DOM are particularly sensitive to photolysis, whereas high molecular weight protein-like structures are degraded primarily through physical–chemical and microbial processes. Furthermore, microbial and physical processes initiated the formation of recalcitrant, highly colored high molecular weight polymeric structures in mangrove-derived DOM. Thus, partial, biogeochemical transformation of plant-derived DOM from coastal areas is rapid and is likely to influence carbon and nutrient cycling, especially in areas dominated by seagrass and mangrove forests.
Resumo:
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.
Resumo:
Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) optical properties were analyzed along two estuarine river transects during the wet and dry seasons to better understand DOM dynamics and quantify mangrove inputs. A tidal study was performed to assess the impacts of tidal pumping on DOM transport. DOM in the estuaries showed non-conservative mixing indicative of mangrove-derived inputs. Similarly, fluorescence data suggest that some terrestrial humic-like components showed non-conservative behavior. An Everglades freshwater-derived fluorescent component, which is associated with soil inputs from the Northern Everglades, behaved conservatively. During the dry season, a protein-like component behaved conservatively until the mid-salinity range when non-conservative behavior due to degradation and/or loss was observed. The tidal study data suggests mangrove porewater inputs to the rivers following low tide. The differences in quantity of DOM exported by the Shark and Harney Rivers imply that geomorphology and tidal hydrology may be a dominant factor controlling the amount of DOM exported from the mangrove ecotone, where up to 21 % of the DOC is mangrove-derived. Additionally, nutrient concentrations and other temporal factors may control DOM export from the mangroves, particularly for the microbially derived fluorescent components, contributing to the seasonal differences. The wet and dry season fluxes of mangrove DOM from the Shark River is estimated as 0.27 × 109 mg C d−1 and 0.075 × 109 mg C d−1, respectively, and the Harney River is estimated as 1.9 × 109 mg C d−1 and 0.20 × 109 mg C d−1.
Resumo:
The relative abundance of diatom species in different habitats can be used as a tool to infer prior environmental conditions and evaluate management decisions that influence habitat quality. Diatom distribution patterns were examined to characterize relationships between assemblage composition and environmental gradients in a subtropical estuarine watershed. We identified environmental correlates of diatom distribution patterns across the Charlotte Harbor, Florida, watershed; evaluated differences among three major river drainages; and determined how accurately local environmental conditions can be predicted using inference models based on diatom assemblages. Sampling locations ranged from freshwater to marine (0.1–37.2 ppt salinity) and spanned broad nutrient concentration gradients. Salinity was the predominant driver of difference among diatom assemblages across the watershed, but other environmental variables had stronger correlations with assemblages within the subregions of the three rivers and harbor. Eighteen indicator taxa were significantly affiliated with subregions. Relationships between diatom taxon distributions and salinity, distance from the harbor, total phosphorus (TP), and total nitrogen (TN) were evaluated to determine the utility of diatom assemblages to predict environmental values using a weighted averaging-regression approach. Diatom-based inferences of these variables were strong (salinity R 2 = 0.96; distance R 2 = 0.93; TN R 2 = 0.83; TP R 2 = 0.83). Diatom assemblages provide reliable estimates of environmental parameters on different spatial scales across the watershed. Because many coastal diatom taxa are ubiquitous, the diatom training sets provided here should enable diatom-based environmental reconstructions in subtropical estuaries that are being rapidly altered by land and water use changes and sea level rise.