969 resultados para Wijsman topology
Resumo:
Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band.
Resumo:
Since Wireless Sensor Networks (WSNs) are subject to failures, fault-tolerance becomes an important requirement for many WSN applications. Fault-tolerance can be enabled in different areas of WSN design and operation, including the Medium Access Control (MAC) layer and the initial topology design. To be robust to failures, a MAC protocol must be able to adapt to traffic fluctuations and topology dynamics. We design ER-MAC that can switch from energy-efficient operation in normal monitoring to reliable and fast delivery for emergency monitoring, and vice versa. It also can prioritise high priority packets and guarantee fair packet deliveries from all sensor nodes. Topology design supports fault-tolerance by ensuring that there are alternative acceptable routes to data sinks when failures occur. We provide solutions for four topology planning problems: Additional Relay Placement (ARP), Additional Backup Placement (ABP), Multiple Sink Placement (MSP), and Multiple Sink and Relay Placement (MSRP). Our solutions use a local search technique based on Greedy Randomized Adaptive Search Procedures (GRASP). GRASP-ARP deploys relays for (k,l)-sink-connectivity, where each sensor node must have k vertex-disjoint paths of length ≤ l. To count how many disjoint paths a node has, we propose Counting-Paths. GRASP-ABP deploys fewer relays than GRASP-ARP by focusing only on the most important nodes – those whose failure has the worst effect. To identify such nodes, we define Length-constrained Connectivity and Rerouting Centrality (l-CRC). Greedy-MSP and GRASP-MSP place minimal cost sinks to ensure that each sensor node in the network is double-covered, i.e. has two length-bounded paths to two sinks. Greedy-MSRP and GRASP-MSRP deploy sinks and relays with minimal cost to make the network double-covered and non-critical, i.e. all sensor nodes must have length-bounded alternative paths to sinks when an arbitrary sensor node fails. We then evaluate the fault-tolerance of each topology in data gathering simulations using ER-MAC.
Resumo:
This thesis is concerned with inductive charging of electric vehicle batteries. Rectified power form the 50/60 Hz utility feeds a dc-ac converter which delivers high-frequency ac power to the electric vehicle inductive coupling inlet. The inlet configuration has been defined by the Society of Automotive Engineers in Recommended Practice J-1773. This thesis studies converter topologies related to the series resonant converter. When coupled to the vehicle inlet, the frequency-controlled series-resonant converter results in a capacitively-filtered series-parallel LCLC (SP-LCLC) resonant converter topology with zero voltage switching and many other desirable features. A novel time-domain transformation analysis, termed Modal Analysis, is developed, using a state variable transformation, to analyze and characterize this multi-resonant fourth-orderconverter. Next, Fundamental Mode Approximation (FMA) Analysis, based on a voltage-source model of the load, and its novel extension, Rectifier-Compensated FMA (RCFMA) Analysis, are developed and applied to the SP-LCLC converter. The RCFMA Analysis is a simpler and more intuitive analysis than the Modal Analysis, and provides a relatively accurate closed-form solution for the converter behavior. Phase control of the SP-LCLC converter is investigated as a control option. FMA and RCFMA Analyses are used for detailed characterization. The analyses identify areas of operation, which are also validated experimentally, where it is advantageous to phase control the converter. A novel hybrid control scheme is proposed which integrates frequency and phase control and achieves reduced operating frequency range and improved partial-load efficiency. The phase-controlled SP-LCLC converter can also be configured with a parallel load and is an excellent option for the application. The resulting topology implements soft-switching over the entire load range and has high full-load and partial-load efficiencies. RCFMA Analysis is used to analyze and characterize the new converter topology, and good correlation is shown with experimental results. Finally, a novel single-stage power-factor-corrected ac-dc converter is introduced, which uses the current-source characteristic of the SP-LCLC topology to provide power factor correction over a wide output power range from zero to full load. This converter exhibits all the advantageous characteristics of its dc-dc counterpart, with a reduced parts count and cost. Simulation and experimental results verify the operation of the new converter.
Resumo:
In this work we introduce a new mathematical tool for optimization of routes, topology design, and energy efficiency in wireless sensor networks. We introduce a vector field formulation that models communication in the network, and routing is performed in the direction of this vector field at every location of the network. The magnitude of the vector field at every location represents the density of amount of data that is being transited through that location. We define the total communication cost in the network as the integral of a quadratic form of the vector field over the network area. With the above formulation, we introduce a mathematical machinery based on partial differential equations very similar to the Maxwell's equations in electrostatic theory. We show that in order to minimize the cost, the routes should be found based on the solution of these partial differential equations. In our formulation, the sensors are sources of information, and they are similar to the positive charges in electrostatics, the destinations are sinks of information and they are similar to negative charges, and the network is similar to a non-homogeneous dielectric media with variable dielectric constant (or permittivity coefficient). In one of the applications of our mathematical model based on the vector fields, we offer a scheme for energy efficient routing. Our routing scheme is based on changing the permittivity coefficient to a higher value in the places of the network where nodes have high residual energy, and setting it to a low value in the places of the network where the nodes do not have much energy left. Our simulations show that our method gives a significant increase in the network life compared to the shortest path and weighted shortest path schemes. Our initial focus is on the case where there is only one destination in the network, and later we extend our approach to the case where there are multiple destinations in the network. In the case of having multiple destinations, we need to partition the network into several areas known as regions of attraction of the destinations. Each destination is responsible for collecting all messages being generated in its region of attraction. The complexity of the optimization problem in this case is how to define regions of attraction for the destinations and how much communication load to assign to each destination to optimize the performance of the network. We use our vector field model to solve the optimization problem for this case. We define a vector field, which is conservative, and hence it can be written as the gradient of a scalar field (also known as a potential field). Then we show that in the optimal assignment of the communication load of the network to the destinations, the value of that potential field should be equal at the locations of all the destinations. Another application of our vector field model is to find the optimal locations of the destinations in the network. We show that the vector field gives the gradient of the cost function with respect to the locations of the destinations. Based on this fact, we suggest an algorithm to be applied during the design phase of a network to relocate the destinations for reducing the communication cost function. The performance of our proposed schemes is confirmed by several examples and simulation experiments. In another part of this work we focus on the notions of responsiveness and conformance of TCP traffic in communication networks. We introduce the notion of responsiveness for TCP aggregates and define it as the degree to which a TCP aggregate reduces its sending rate to the network as a response to packet drops. We define metrics that describe the responsiveness of TCP aggregates, and suggest two methods for determining the values of these quantities. The first method is based on a test in which we drop a few packets from the aggregate intentionally and measure the resulting rate decrease of that aggregate. This kind of test is not robust to multiple simultaneous tests performed at different routers. We make the test robust to multiple simultaneous tests by using ideas from the CDMA approach to multiple access channels in communication theory. Based on this approach, we introduce tests of responsiveness for aggregates, and call it CDMA based Aggregate Perturbation Method (CAPM). We use CAPM to perform congestion control. A distinguishing feature of our congestion control scheme is that it maintains a degree of fairness among different aggregates. In the next step we modify CAPM to offer methods for estimating the proportion of an aggregate of TCP traffic that does not conform to protocol specifications, and hence may belong to a DDoS attack. Our methods work by intentionally perturbing the aggregate by dropping a very small number of packets from it and observing the response of the aggregate. We offer two methods for conformance testing. In the first method, we apply the perturbation tests to SYN packets being sent at the start of the TCP 3-way handshake, and we use the fact that the rate of ACK packets being exchanged in the handshake should follow the rate of perturbations. In the second method, we apply the perturbation tests to the TCP data packets and use the fact that the rate of retransmitted data packets should follow the rate of perturbations. In both methods, we use signature based perturbations, which means packet drops are performed with a rate given by a function of time. We use analogy of our problem with multiple access communication to find signatures. Specifically, we assign orthogonal CDMA based signatures to different routers in a distributed implementation of our methods. As a result of orthogonality, the performance does not degrade because of cross interference made by simultaneously testing routers. We have shown efficacy of our methods through mathematical analysis and extensive simulation experiments.
Resumo:
Understanding the interconversion between thermodynamically distinguishable states present in a protein folding pathway provides not only the kinetics and energetics of protein folding but also insights into the functional roles of these states in biological systems. The protein component of the bacterial RNase P holoenzyme from Bacillus subtilis (P protein) was previously shown to be unfolded in the absence of its cognate RNA or other anionic ligands. P protein was used in this study as a model system to explore general features of intrinsically disordered protein (IDP) folding mechanisms. The use of trimethylamine N-oxide (TMAO), an osmolyte that stabilizes the unliganded folded form of the protein, enabled us to study the folding process of P protein in the absence of ligand. Transient stopped-flow kinetic traces at various final TMAO concentrations exhibited multiphasic kinetics. Equilibrium "cotitration" experiments were performed using both TMAO and urea during the titration to produce a urea-TMAO titration surface of P protein. Both kinetic and equilibrium studies show evidence of a previously undetected intermediate state in the P protein folding process. The intermediate state is significantly populated, and the folding rate constants are relatively slow compared to those of intrinsically folded proteins similar in size and topology. The experiments and analysis described serve as a useful example for mechanistic folding studies of other IDPs.
Resumo:
Pharmacologic, biochemical, and genetic analyses have demonstrated the existence of multiple alpha 2-adrenergic receptor (alpha 2AR) subtypes. We have cloned a human alpha 2AR by using the polymerase chain reaction with oligonucleotide primers homologous to conserved regions of the previously cloned alpha 2ARs, the genes for which are located on human chromosomes 4 (C4) and 10 (C10). The deduced amino acid sequence encodes a protein of 450 amino acids whose putative topology is similar to that of the family of guanine nucleotide-binding protein-coupled receptors, but whose structure most closely resembles that of the alpha 2ARs. Competition curve analysis of the binding properties of the receptor expressed in COS-7 cells with a variety of adrenergic ligands demonstrates a unique alpha 2AR pharmacology. Hybridization with somatic cell hybrids shows that the gene for this receptor is located on chromosome 2. Northern blot analysis of various rat tissues shows expression in liver and kidney. The unique pharmacology and tissue localization of this receptor suggest that this is an alpha 2AR subtype not previously identified by classical pharmacological or ligand binding approaches.
Resumo:
The molecular networks regulating the G1-S transition in budding yeast and mammals are strikingly similar in network structure. However, many of the individual proteins performing similar network roles appear to have unrelated amino acid sequences, suggesting either extremely rapid sequence evolution, or true polyphyly of proteins carrying out identical network roles. A yeast/mammal comparison suggests that network topology, and its associated dynamic properties, rather than regulatory proteins themselves may be the most important elements conserved through evolution. However, recent deep phylogenetic studies show that fungal and animal lineages are relatively closely related in the opisthokont branch of eukaryotes. The presence in plants of cell cycle regulators such as Rb, E2F and cyclins A and D, that appear lost in yeast, suggests cell cycle control in the last common ancestor of the eukaryotes was implemented with this set of regulatory proteins. Forward genetics in non-opisthokonts, such as plants or their green algal relatives, will provide direct information on cell cycle control in these organisms, and may elucidate the potentially more complex cell cycle control network of the last common eukaryotic ancestor.
Resumo:
Accurate ab initio intermolecular potential energy surfaces (IPES) have been obtained for the first time for the ground electronic state of the C 2H2-Kr and C2H2-Xe van der Waals complexes. Extensive tests, including complete basis set and all-electron scalar relativistic results, support their calculation at the CCSD(T) level of theory, using small-core relativistic pseudopotentials for the rare-gas atoms and aug-cc-pVQZ basis sets extended with a set of 3s3p2d1f1g mid-bond functions. All results are corrected for the basis set superposition error. The importance of the scalar relativistic and rare-gas outer-core (n.1)d correlation effects is investigated. The calculated IPES, adjusted to analytical functions, are characterized by global minima corresponding to skew T-shaped geometries, in which the Jacobi vector positioning the rare-gas atom with respect to the center of mass of the C2H2 moiety corresponds to distances of 4.064 and 4.229Å, and angles of 65.22° and 68.67° for C 2H2-Kr and C2H2-Xe, respectively. The interaction energy of both complexes is estimated to be -151.88 (1.817 kJ mol-1) and -182.76 cm-1 (2.186 kJ mol-1), respectively. The evolution of the topology of the IPES as a function of the rare-gas atom, from He to Xe, is also discussed. © 2012 Taylor and Francis.
Resumo:
Interfacial waves on the surface of a falling liquid film are known to modify heat and mass transfer. Under non-isothermal conditions, the wave topology is strongly influenced by the presence of thermocapillary (Marangoni) forces at the interface which leads to a destabilization of the film flow and potentially to critical film thinning. In this context, the present study investigates the evolution of the surface topology and the evolution of the surface temperature for the case of regularly excited solitary-type waves on a falling liquid film under the influence of a wall-side heat flux. Combining film thickness (chromatic confocal imaging) and surface temperature information (infrared thermography), interactions between hydrodynamics and thermocapillary forces are revealed. These include the formation of rivulets, film thinning and wave number doubling in spanwise direction. Distinct thermal structures on the films’ surface can be associated to characteristics of the surface topology.
Resumo:
Realizing scalable performance on high performance computing systems is not straightforward for single-phenomenon codes (such as computational fluid dynamics [CFD]). This task is magnified considerably when the target software involves the interactions of a range of phenomena that have distinctive solution procedures involving different discretization methods. The problems of addressing the key issues of retaining data integrity and the ordering of the calculation procedures are significant. A strategy for parallelizing this multiphysics family of codes is described for software exploiting finite-volume discretization methods on unstructured meshes using iterative solution procedures. A mesh partitioning-based SPMD approach is used. However, since different variables use distinct discretization schemes, this means that distinct partitions are required; techniques for addressing this issue are described using the mesh-partitioning tool, JOSTLE. In this contribution, the strategy is tested for a variety of test cases under a wide range of conditions (e.g., problem size, number of processors, asynchronous / synchronous communications, etc.) using a variety of strategies for mapping the mesh partition onto the processor topology.
Resumo:
This paper describes a protocol for dynamically configuring wireless sensor nodes into logical clusters. The concept is to be able to inject an overlay configuration into an ad-hoc network of sensor nodes or similar devices, and have the network configure itself organically. The devices are arbitrarily deployed and have initially have no information whatsoever concerning physical location, topology, density or neighbourhood. The Emergent Cluster Overlay (ECO) protocol is totally self-configuring and has several novel features, including nodes self-determining their mobility based on patterns of neighbour discovery, and that the target cluster size is specified externally (by the sensor network application) and is not directly coupled to radio communication range or node packing density. Cluster head nodes are automatically assigned as part of the cluster configuration process, at no additional cost. ECO is ideally suited to applications of wireless sensor networks in which localized groups of sensors act cooperatively to provide a service. This includes situations where service dilution is used (dynamically identifying redundant nodes to conserve their resources).
Resumo:
The diversity gains achievable in the generalised distributed antenna system with cooperative users (GDAS-CU) are considered. A GDAS-CU is comprised of M largely separated access points (APs) at one side of the link, and N geographically closed user terminals (UTs) at the other side. The UTs are collaborating together to enhance the system performance, where an idealised message sharing among the UTs is assumed. First, geometry-based network models are proposed to describe the topology of a GDAS-CU. The mean cross-correlation coefficients of signals received from non-collocated APs and UTs are calculated based on the network topology and the correlation models derived from the empirical data. The analysis is also extendable to more general scenarios where the APs are placed in a clustered form due to the constraints of street layout or building structure. Subsequently, a generalised signal attenuation model derived from several stochastic ray-tracing-based pathloss models is applied to describe the power-decaying pattern in urban built-up areas, where the GDAS-CU may be deployed. Armed with the cross-correlation and pathloss model preliminaries, an intrinsic measure of cooperative diversity obtainable from a GDAS-CU is then derived, which is the number of independent fading channels that can be averaged over to detect symbols. The proposed analytical framework would provide critical insight into the degree of possible performance improvement when combining multiple copies of the received signal in such systems.
Resumo:
As the expression of the genetic blueprint, proteins are at the heart of all biological systems. The ever increasing set of available protein structures has taught us that diversity is the hallmark of their architecture, a fundamental characteristic that enables them to perform the vast array of functionality upon which all of life depends. This diversity, however, is central to one of the most challenging problems in molecular biology: how does a folding polypeptide chain navigate its way through all of the myriad of possible conformations to find its own particular biologically active form? With few overarching structural principles to draw upon that can be applied to all protein architecture, the search for a solution to the protein folding problem has yet to produce an algorithm that can explain and duplicate this fundamental biological process. In this thesis, we take a two-pronged approach for investigating the protein folding process. Our initial statistical studies of the distributions of hydrophobic and hydrophilic residues within α-helices and β-sheets suggest (i) that hydrophobicity plays a critical role in helix and sheet formation; and (ii) that the nucleation of these motifs may result in largely unidirectional growth. Most tellingly, from an examination of the amino acids found in the smallest β-sheets, we do not find any evidence of a β-nucleating code in the primary protein sequence. Complementing these statistical analyses, we have analyzed the structural environments of several ever-widening aspects of protein topology. Our examination of the gaps between strands in the smallest β-sheets reveals a common organizational principle underlying β-formation involving strands separated by large sequential gaps: with very few exceptions, these large gaps fold into single, compact structural modules, bringing the β-strands that are otherwise far apart in the sequence close together in space. We conclude, therefore, that β-nucleation in the smallest sheets results from the co-location of two strands that are either local in sequence, or local in space following prior folding events. A second study of larger β-sheets both corroborates and extends these findings: virtually all large sequential gaps between pairs of β-strands organize themselves into an hierarchical arrangement, creating a bread-crumb model of go-and-come-back structural organization that ultimately juxtaposes two strands of a parental β-structure that are far apart in the sequence in close spatial proximity. In a final study, we have formalized this go-and-come-back notion into the concept of anti-parallel double-strandedness (DS), and measure this property across protein architecture in general. With over 90% of all residues in a large, non-redundant set of protein structures classified as DS, we conclude that DS is a unifying structural principle that underpins all globular proteins. We postulate, moreover, that this one simple principle, anti-parallel double-strandedness, unites protein structure, protein folding and protein evolution.