911 resultados para Westminster Assembly (1643-1652).
Resumo:
The use of ionic self-assembly, a facile noncovalent approach, to access non-conventional block copolymer morphologies, including tetragonal and helical structures, from a combination of polyferrocenylsilane diblock copolymer polyelectrolytes and AOT-based surfactants, is described.
Resumo:
A thermal transition is observed in the peptide amphiphile C16-KTTKS (TFA salt) from nanotapes at 20 degrees C to micelles at higher temperature (the transition temperature depending on concentration). The formation of extended nanotapes by the acetate salt of this peptide amphiphile, which incorporates a pentapeptide from type I procollagen, has been studied previously [V. Castelletto et al., Chem. Commun., 2010, 46, 9185]. Here, proton NMR and SAXS provide evidence for the TFA salt spherical micelles at high temperature. The phase behavior, with a Krafft temperature separating insoluble aggregates (extended nanotapes) at low temperature from the high temperature micellar phase resembles that for conventional surfactants, however this has not previously been reported for peptide amphiphiles.
Resumo:
The self-assembly in aqueous solution of the alanine-rich peptide A12R2 containing twelve alanine residues and two arginine residues has been investigated. This oligomeric peptide was synthesized via NCA-polymerization methods. The surfactant-like peptide is found via FTIR to form antiparallel dimers which aggregate into twisted fibrils, as revealed by cryogenic-transmission electron microscopy. The fibril substructure is probed via detailed X-ray scattering experiments, and are uniquely comprised of twisted tapes only 5 nm wide, set by the width of the antiparallel A12R2 dimers. The packing of the alanine residues leads to distinct “b-sheet” spacings compared to those for amyloid-forming peptides. For this peptide, b-sheet structure coexists with some a-helical content. These ultrafine amyloid fibrils present arginine at high density on their surfaces, and this may lead to applications in nanobiotechnology.
Resumo:
The o-palladated, chloro-bridged dimers [Pd{2-phenylpyridine(-H)}-μ-Cl]2 and [Pd{N,N-dimethylbenzylamine(-H)}-μ-Cl]2 react with cyanuric acid in the presence of base to afford closed, chiral cage-molecules in which twelve organo-Pd(II) centers, located in pairs at the vertices of an octahedron, are linked by four tetrahedrally-arranged cyanurato(3-) ligands. Incomplete (Pd10) cages, having structures derived from the corresponding Pd12 cages by replacing one pair of organopalladium centers with two protons, have also been isolated. Reaction of [Pd{2-phenylpyridine(-H)}-μ-Cl]2 with trithiocyanuric acid gives an entirely different and more open type of cage-complex, comprising only nine organopalladium centers and three thiocyanurato(3-) ligands: cage-closure in this latter system appears to be inhibited by steric crowding of the thiocarbonyl groups.
Resumo:
Transitions in nanostructure driven by pH are observed for a self-assembling peptide amphiphile (PA) with a cationic pentapeptide headgroup. At pH 3, the PA forms flat tape-like structures, while at pH 4 the PA assembles into twisted right handed structures. These twisted structures transform again to flat tape-like structures at pH 7. In complete contrast, spherical micelles are observed at pH 2. These changes in response to pH may be relevant to biological and pharmaceutical applications of this PA in skincare.
Resumo:
The self-assembly of three cosmetically active peptide amphiphiles C16-GHK, C16-KT, and C16-KTTKS (C16 denotes a hexadecyl, palmitoyl chain) used in commercial skin care products is examined. A range of spectroscopic, microscopic, and X-ray scattering methods is used to probe the secondary structure, aggregate morphology, and the nanostructure. Peptide amphiphile (PA) C16-KTTKS forms flat tapes and extended fibrillar structures with high β-sheet content. In contrast, C16-KT and C16-GHK exhibit crystal-like aggregates with, in the case of the latter PA, lower β-sheet content. All three PA samples show spacings from bilayer structures in small-angle X-ray scattering profiles, and all three have similar critical aggregation concentrations, this being governed by the lipid chain length. However, only C16-KTTKS is stained by Congo red, a diagnostic dye used to detect amyloid formation, and this PA also shows a highly aligned cross-β X-ray diffraction pattern consistent with the high β-sheet content in the self-assembled aggregates. These findings may provide important insights relevant to the role of self-assembled aggregates on the reported collagen-stimulating properties of these PAs.
Resumo:
The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol-1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of b-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.
Resumo:
The self-assembly in aqueous solution of three lipopeptides obtained from Bacillus subtilis has been investigated. The lipopeptides surfactin, plipastatin and mycosubtilin contain distinct cyclic peptide headgroups as well as differences in alkyl chain length, branching and chain length distribution. Cryogenic transmission electron microscopy and X-ray scattering reveal that surfactin and plipastatin aggregate into 2 nm-radius spherical micelles, whereas in complete contrast mycosubtilin self-assembles into extended nanotapes based on bilayer ordering of the lipopeptides. Circular dichroism and FTIR spectroscopy indicate the presence of turn structures in the cyclic peptide headgroup. The unexpected distinct mode of self-assembly of mycosubtilin compared to the other two lipopeptides is ascribed to differences in the surfactant packing parameter. This in turn is due to specific features of the conformation of the peptide headgroup and alkyl chain branching.
Resumo:
This paper presents a detailed consideration of the three democratic assembly meetings that are reported in Greek tragedy. The three scenes in their different ways reveal a preoccupation with a tension between elite rhetoric and popular wisdom in a democracy. Behind this preoccupation lies a shared assumption: that many people attended assemblies expecting their minds to be made up; and that persuasive oratory and the popular judgment of persuasive oratory could have a decisive influence on a vote.
Resumo:
A new synthetic tripeptide-based hydrogel has been discovered at physiological pH and temperature. This hydrogel has been thoroughly characterized using different techniques including field emission scanning electron microscopic (FESEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, small- and wide-angle X-ray diffraction analyses, FT-IR, circular dichroism, and rheometric analyses. Moreover, this gel exhibits thixotropy and injectability. This hydrogel has been used for entrapment and sustained release of an antibiotic vancomycin and vitamin B12 at physiological pH and temperature for about 2 days. Interestingly, MTT assay of these gelator molecules shows almost 100% cell viability of this peptide gelator, indicating its noncytotoxicity.
Resumo:
The dicistrovirus Israeli Acute Paralysis Virus (IAPV) has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.
Resumo:
Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexahistidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac’s), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the β-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.
Resumo:
Consideration of the geometrical features of the functional groups present in furosemide has enabled synthesis of a series of ternary co-crystals with predictable structural features, containing a robust asymmetric two-dimensional network.
Resumo:
A virtual system that emulates an ARM-based processor machine has been created to replace a traditional hardware-based system for teaching assembly language. The proposed virtual system integrates, in a single environment, all the development tools necessary to deliver introductory or advanced courses on modern assembly language programming. The virtual system runs a Linux operating system in either a graphical or console mode on a Windows or Linux host machine. No software licenses or extra hardware are required to use the virtual system, thus students are free to carry their own ARM emulator with them on a USB memory stick. Institutions adopting this, or a similar virtual system, can also benefit by reducing capital investment in hardware-based development kits and enable distance learning courses.
Resumo:
We describe a bioactive lipopeptide that combines the capacity to promote the adhesion and subsequent self-detachment of live cells, using template-cell-environment feedback interactions. This self-assembling peptide amphiphile comprises a diene-containing hexadecyl lipid chain (C16e) linked to a matrix metalloprotease-cleavable sequence, Thr-Pro-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln, and contiguous with a cell-attachment and signalling motif, Arg-Gly-Asp-Ser. Biophysical characterisation revealed that the PA self-assembles into 3 nm diameter spherical micelles above a critical aggregation concentration (cac). In addition, when used in solution at 5–150 nM (well below the cac), the PA is capable of forming film coatings that provide a stable surface for human corneal fibroblasts to attach and grow. Furthermore, these coatings were demonstrated to be sensitive to metalloproteases expressed endogenously by the attached cells, and consequently to elicit the controlled detachment of cells without compromising their viability. As such, this material constitutes a novel class of multi-functional coating for both fundamental and clinical applications in tissue engineering.