945 resultados para Weapons of Mass Destruction
Effect of nano-Si2O and nano-Al2O3 on cement mortars for use in agriculture and livestock production
Resumo:
The effect of nano-silica, nano-alumina and binary combinations on surface hardness, resistance to abrasion and freeze-thaw cycle resistance in cement mortars was investigated. The Vickers hardness, the Los Angeles coefficient (LA) and the loss of mass in each of the freeze–thaw cycles to which the samples were subjected were measured. Four cement mortars CEM I 52.5R were prepared, one as control, and the other three with the additions: 5% nano-Si, 5% nano-Al and mix 2.5% n-Si and 2.5% n-Al. Mortars were tested at 7, 28 and 90 d of curing to determine compression strength, total porosity and pore distribution by mercury intrusion porosimetry (MIP) and the relationship between the CSH gel and Portlandite total by thermal gravimetric analysis (TGA). The capillary suction coefficient and an analysis by a scanning electron microscope (SEM) was made. There was a large increase in Vickers surface hardness for 5% n-Si mortar and a slight increase in resistance to abrasion. No significant difference was found between the mortars with nano-particles, whose LA was about 10.8, classifying them as materials with good resistance to abrasion. The microstructure shows that the addition of n-Si in mortars refines their porous matrix, increases the amount of hydrated gels and generates significant changes in both Portlandite and Ettringite. This produced a significant improvement in freeze–thaw cycle resistance. The effect of n-Al on mortar was null or negative with respect to freeze–thaw cycle resistance.
Resumo:
Understanding the relationship between animal community dynamics and landscape structure has become a priority for biodiversity conservation. In particular, predicting the effects of habitat destruction that confine species to networks of small patches is an important prerequisite to conservation plan development. Theoretical models that predict the occurrence of species in fragmented landscapes, and relationships between stability and diversity do exist. However, reliable empirical investigations of the dynamics of biodiversity have been prevented by differences in species detection probabilities among landscapes. Using long-term data sampled at a large spatial scale in conjunction with a capture-recapture approach, we developed estimates of parameters of community changes over a 22-year period for forest breeding birds in selected areas of the eastern United States. We show that forest fragmentation was associated not only with a reduced number of forest bird species, but also with increased temporal variability in the number of species. This higher temporal variability was associated with higher local extinction and turnover rates. These results have major conservation implications. Moreover, the approach used provides a practical tool for the study of the dynamics of biodiversity.
Resumo:
Objectives: To compare the feasibility of mass screening by flexible sigmoidoscopy with screening by faecal occult blood testing (Haemoccult) and both tests combined.
Resumo:
Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to ≈1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2–4. The baryonic fractions vary by a factor of ≈3 from cluster to cluster and almost always exceed 0.09 h50−[3/2] and thus are in fundamental conflict with the assumption of Ω = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2–0.45 solar, and the abundances of O and Si for low redshift systems are 0.6–1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z ≈ 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1–0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50−2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.
Resumo:
The fossil record of land plants is an obvious source of information on the dynamics of mass extinctions in the geological past. In conjunction with the end-Permian ecological crisis, ≈250 million years ago, palynological data from East Greenland reveal some unanticipated patterns. We document the significant time lag between terrestrial ecosystem collapse and selective extinction among characteristic Late Permian plants. Furthermore, ecological crisis resulted in an initial increase in plant diversity, instead of a decrease. Paradoxically, these floral patterns correspond to a “dead zone” in the end-Permian faunal record, characterized by a paucity of marine invertebrate megafossils. The time-delayed, end-Permian plant extinctions resemble modeled “extinction debt” responses of multispecies metapopulations to progressive habitat destruction.
Resumo:
Experiments using planktonic organisms revealed that the balance of radiant energy and available nutrients regulated herbivore growth rates through their effects on abundance and chemical composition of primary producers. Both algae and herbivores were energy limited at low light/nutrient ratios, but both were nutrient limited at high light/nutrient ratios. Herbivore growth increased with increasing light intensity at low values of the light/nutrient ratio due to increases in algal biomass, but growth decreased with increasing light at a high light/nutrient ratio due to decreases in algal quality. Herbivore production therefore was maximal at intermediate levels of the light/nutrient ratio. The results contribute to an understanding of mass transfer mechanisms in ecosystems and illustrate the importance of integration of energy-based and material-based currencies in ecology.
Resumo:
Chronic administration of estrogen to the Fischer 344 (F344) rat induces growth of large, hemorrhagic pituitary tumors. Ten weeks of diethylstilbestrol (DES) treatment caused female F344 rat pituitaries to grow to an average of 109.2 +/- 6.3 mg (mean +/- SE) versus 11.3 +/- 1.4 mg for untreated rats, and to become highly hemorrhagic. The same DES treatment produced no significant growth (8.9 +/- 0.5 mg for treated females versus 8.7 +/- 1.1 for untreated females) or morphological changes in Brown Norway (BN) rat pituitaries. An F1 hybrid of F344 and BN exhibited significant pituitary growth after 10 weeks of DES treatment with an average mass of 26.3 +/- 0.7 mg compared with 8.6 +/- 0.9 mg for untreated rats. Surprisingly, the F1 hybrid tumors were not hemorrhagic and had hemoglobin content and outward appearance identical to that of BN. Expression of both growth and morphological changes is due to multiple genes. However, while DES-induced pituitary growth exhibited quantitative, additive inheritance, the hemorrhagic phenotype exhibited recessive, epistatic inheritance. Only 5 of the 160 F2 pituitaries exhibited the hemorrhagic phenotype; 36 of the 160 F2 pituitaries were in the F344 range of mass, but 31 of these were not hemorrhagic, indicating that the hemorrhagic phenotype is not merely a consequence of extensive growth. The hemorrhagic F2 pituitaries were all among the most massive, indicating that some of the genes regulate both phenotypes.
Resumo:
Pathogenesis of simian immunodeficiency virus (SIV) infection in rhesus macaques begins with acute viremia and then progresses to a distributed infection in the solid lymphoid tissues, which is followed by a process of cellular destruction leading to terminal disease and death. Blood and tissue specimens show the progress of infection at the cellular level but do not reveal the pattern of infection and host responses occurring throughout the body. The purpose of this investigation was to determine whether positron emission tomography (PET) imaging with intravenous 2-18F-2-deoxyglucose (FDG) could identify activated lymphoid tissues in a living animal and whether this pattern would reflect the extent of SIV infection. PET images from SIV-infected animals were distinguishable from uninfected controls and revealed a pattern consistent with widespread lymphoid tissue activation. Significant FDG accumulation in colon along with mesenteric and ileocaecal lymph nodes was found in SIV infection, especially during terminal disease stages. Areas of elevated FDG uptake in the PET images were correlated with productive SIV infection using in situ hybridization as a test for virus replication. PET-FDG images of SIV-infected animals correlated sites of virus replication with high FDG accumulation. These data show that the method can be used to evaluate the distribution and activity of infected tissues in a living animal without biopsy. Fewer tissues had high FDG uptake in terminal animals than midstage animals, and both were clearly distinguishable from uninfected animal scans.
Resumo:
We have observed electrostatic trapping of tribranched DNA molecules undergoing electrophoresis in a microfabricated pseudo-two-dimensional array of posts. Trapping occurs in a unique transport regimen in which the electrophoretic mobility is extremely sensitive to polymer topology. The arrest of branched polymers is explained by considering their center-of-mass motion; in certain conformations, owing to the constraints imposed by the obstacles a molecule cannot advance without the center of mass first moving a short distance backwards. The depth of the resulting local potential well can be much greater than the thermal energy so that escape of an immobilized molecule can be extremely slow. We summarize the expected behavior of the mobility as a function of field strength and topology and point out that the microfabricated arrays are highly suitable for detecting an extremely small number of branched molecules in a very large population of linear molecules.
Resumo:
It has been shown that the pituitary contains a cytotropic factor (CTF) that stimulates the secretion of catecholamines by dopaminergic neurons of the hypothalamus. In the present study, CTF was purified from rat pituitaries and found by means of mass spectrometric analysis to be adenosine. This finding was corroborated by the observations that CTF behaves identically to adenosine when subjected to liquid chromatography, is inactivated and converted to inosine by adenosine deaminase, and is qualitatively and quantitatively indistinguishable from adenosine in its biological activity. It is concluded that pituitary adenosine is a trophic factor for hypothalamic dopaminergic neurons.
Resumo:
This study evaluated whether development of the Colorado River system has exceeded sustainability by comparing the trends in water use in the Colorado River. Two sustainable areas were identified in the upper basin and one in the lower-- the mainstream Colorado River, Green and Yampa rivers, and the Little Colorado River. These areas are also high priority recovery areas for four endangered fishes and protected by critical habitat provisions of the ESA. Unfortunately, the endangered fishes are declining because of habitat destruction and non-native species. If increasing water demand causes the fishes to go extinct the few sustainable areas will be lost. It will take careful management of the endangered fishes and water users to ensure these areas are maintained.
Resumo:
Tourism is the main economic activity in many towns in the province of Alicante in southeast Spain and has turned this area into a paradigmatic example of mass tourism on the Mediterranean coast. Since the 1960s, the province's coastal towns have opted for a development model centred on what is known as 'residential tourism' or 'second-home tourism', with few exceptions, such as Benidorm. We wish to put forward the argument that the main social agents in the tourism sector have not perceived the 'search for authenticity' as a factor that may attract tourists to this area. To this end, we will start by reviewing critically the theoretical discourse about the role played by authenticity in the motivation of tourists. Then we will discuss some of the results obtained from empirical, qualitative research that included 37 in-depth interviews. As a guide for our empirical research, we use a model based on the stakeholder theory. The epistemological difficulties faced by researchers do not justify certain critical arguments that try to highlight the impossibility of operationalising essential concepts and approaches such as that of authenticity. Therefore, it is necessary that empirical research continues to delve into the sociological keys that determine the 'search for authenticity' in the tourists' experience.
Resumo:
This paper presents a series of calculation procedures for computer design of ternary distillation columns overcoming the iterative equilibrium calculations necessary in these kind of problems and, thus, reducing the calculation time. The proposed procedures include interpolation and intersection methods to solve the equilibrium equations and the mass and energy balances. The calculation programs proposed also include the possibility of rigorous solution of mass and energy balances and equilibrium relations.
Resumo:
CuO/ceria-zirconia catalysts have been prepared, deeply characterised (N2 adsorption–desorption isotherms at −196 °C, XRD, Raman spectroscopy, XPS, TEM and H2-TPR) and tested for NO oxidation to NO2 in TPR conditions, and for soot combustion at mild temperature (400 °C) in a NOx/O2 stream. The behaviour has been compared to that of a reference Pt/alumina commercial catalyst. The ceria-zirconia support was prepared by the co-precipitation method, and different amounts of copper (0.5, 1, 2, 4 and 6 wt%) were loaded by incipient wetness impregnation. The results revealed that copper is well-dispersed onto the ceria-zirconia support for the catalysts with low copper loading and CuO particles were only identified by XRD in samples with 4 and 6% of copper. A very low loading of copper increases significantly the activity for the NO oxidation to NO2 with regard to the ceria-zirconia support and an optimum was found for a 4% CuO/ceria-zirconia composition, showing a very high activity (54% at 348 °C). The soot combustion rate at 400 °C obtained with the 2% CuO/ceria-zirconia catalyst is slightly lower to that of 1% Pt/alumina in terms of mass of catalyst but higher in terms of price of catalyst.
Resumo:
A systematic study on the influence of carbon on the signal of a large number of hard-to-ionize elements (i.e. B, Be, P, S, Zn, As, Se, Pd, Cd, Sb, I, Te, Os, Ir, Pt, Au, and Hg) in inductively coupled plasma–mass spectrometry has been carried out. To this end, carbon matrix effects have been evaluated considering different plasma parameters (i.e. nebulizer gas flow rate, r.f. power and sample uptake rate), sample introduction systems, concentration and type of carbon matrix (i.e. glycerol, citric acid, potassium citrate and ammonium carbonate) and type of mass spectrometer (i.e. quadrupole filter vs. double-focusing sector field mass spectrometer). Experimental results show that P, As, Se, Sb, Te, I, Au and Hg sensitivities are always higher for carbon-containing solutions than those obtained without carbon. The other hard-to-ionize elements (Be, B, S, Zn, Pd, Cd, Os, Ir and Pt) show no matrix effect, signal enhancement or signal suppression depending on the experimental conditions selected. The matrix effects caused by the presence of carbon are explained by changes in the plasma characteristics and the corresponding changes in ion distribution in the plasma (as reflected in the signal behavior plot, i.e. the signal intensity as a function of the nebulizer gas flow rate). However, the matrix effects for P, As, Se, Sb, Te, I, Au and Hg are also related to an increase in analyte ion population caused as a result of charge transfer reactions involving carbon-containing charged species in the plasma. The predominant specie is C+, but other species such as CO+, CO2+, C2+ and ArC+ could also play a role. Theoretical data suggest that B, Be, S, Pd, Cd, Os, Ir and Pt could also be involved in carbon based charge transfer reactions, but no experimental evidence substantiating this view has been found.