914 resultados para Water treatment plants.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work is an analysis of integrated urban waste management in the province of Bologna. It consists of five chapters and one enclosure. Primarily, it focuses on the legislative framework at european, national and local level. Then the study analyses the situation of urban waste system adopted in the reference territory from 2003 to 2007 to show its evolution process. Chapter 3 is based on considerations about the percentage of effective recover of materials derived from separate collection that has been reached in the province of Bologna in 2006. The following chapter describes the urban waste management at national level using dates of 2005 and 2006 by APAT (National Agency for environmental protection). Then, it has been made a comparison with Emilia-Romagna and district of Bologna. Chapter 5 focuses on the description of innovative strategies introduced in the district of Bologna to increase separate collection level and optimize waste management. In particular, it analyses two sperimental projects: one based on door to door collection and the other founded on an integrated collection system which provides the application of two collection models (door to door collection in industrial areas and collection by containers in urban ones). Finally, in the enclosure, it is also descrided best practices of waste management sector about collection models, treatment plants and innovative strategies available at that moment in Europe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mining and processing of metal ores are important causes of soil and groundwater contamination in many regions worldwide. Metal contaminations are a serious risk for the environment and human health. The assessment of metal contaminations in the soil is therefore an important task. A common approach to assess the environmental risk emanating from inorganic contaminations to soil and groundwater is the use of batch or column leaching tests. In this regard, the suitability of leaching tests is a controversial issue. In the first part of this work the applicability and comparability of common leaching tests in the scope of groundwater risk assessment of inorganic contamination is reviewed and critically discussed. Soil water sampling methods (the suction cup method and centrifugation) are addressed as an alternative to leaching tests. Reasons for limitations of the comparability of leaching test results are exposed and recommendations are given for the expedient application of leaching tests for groundwater risk assessment. Leaching tests are usually carried out in open contact with the atmosphere disregarding possible changes of redox conditions. This can affect the original metal speciation and distribution, particularly when anoxic samples are investigated. The influence of sample storage on leaching test results of sulfide bearing anoxic material from a former flotation dump is investigated in a long-term study. Since the oxidation of the sulfide-bearing samples leads to a significant overestimation of metal release, a feasible modification for the conduction of common leaching tests for anoxic material is proposed, where oxidation is prevented efficiently. A comparison of leaching test results to soil water analyzes have shown that the modified saturation soil extraction (SSE) is found to be the only of the tested leaching procedures, which can be recommended for the assessment of current soil water concentrations at anoxic sites if direct investigation of the soil water is impossible due to technical reasons. The vertical distribution and speciation of Zn and Pb in the flotation residues as well as metal concentrations in soil water and plants were investigated to evaluate the environmental risk arising from this site due to the release of metals. The variations in pH and inorganic C content show an acidification of the topsoil with pH values down to 5.5 in the soil and a soil water pH of 6 in 1 m depth. This is due to the oxidation of sulfides and depletion in carbonates. In the anoxic subsoil pH conditions are still neutral and soil water collected with suction cups is in equilibrium with carbonate minerals. Results from extended x-ray absorption fine-structure (EXAFS) spectroscopy confirm that Zn is mainly bound in sphalerite in the subsoil and weathering reactions lead to a redistribution of Zn in the topsoil. A loss of 35% Zn and S from the topsoil compared to the parent material with 10 g/kg Zn has been observed. 13% of total Zn in the topsoil can be regarded as mobile or easily mobilizable according to sequential chemical extractions (SCE). Zn concentrations of 10 mg/L were found in the soil water, where pH is acidic. Electron supply and the buffer capacity of the soil were identified as main factors controlling Zn mobility and release to the groundwater. Variable Pb concentrations up to 30 µg/L were observed in the soil water. In contrast to Zn, Pb is enriched in the mobile fraction of the oxidized topsoil by a factor of 2 compared to the subsoil with 2 g/kg Pb. 80% of the cation exchange capacity in the topsoil is occupied by Pb. Therefore, plant uptake and bioavailability are of major concern. If the site is not prevented from proceeding acidification in the future, a significant release of Zn, S, and Pb to the groundwater has to be expected. Results from this study show that the assessment of metal release especially from sulfide bearing anoxic material requires an extensive comprehension of leaching mechanisms on the one hand and on weathering processes, which influence the speciation and the mobility of metals, on the other hand. Processes, which may change redox and pH conditions in the future, have to be addressed to enable sound decisions for soil and groundwater protection and remediation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyamine polymers have attracted attention due to their ability to demonstrate pH dependent cationic nature and presence of highly reactive pendant amino groups. These amino groups make them suitable for a host of applications through cross-linking and derivatization. As a result the end use application of a polyamine is largely driven by the number of amino groups and the way they are attached to the polymer backbone. Thus, this piece of work describes the synthesis and investigation of properties of a novel aliphatic polyamine, poly(methylene amine); that carries maximum number of amino group on its backbone. The target polymer, poly(methylene amine); was synthesized via two major steps viz.1.synthesis of precursor polymers of poly(methylene amine) and 2. Hydrolysis of the precursor polymers to obtain poly(methylene amine). The precursor polymers poly (1,3-diacetylimidazole-2-one)(6) and poly(1,3-diformyldihydroimidazol-2-one)(7) were synthesized via radical polymerization of their respective monomers. The monomers were polymerized in bulk as well as in solution at different reaction conditions. The maximum molecular weights were achieved by polymerizing the monomers in bulk (Mn = 6.5 x 104 g/mol and Mw = 2.13 x 105 g/mol) of 6. The precursor polymers were hydrolyzed under strong reaction conditions in ethanol in presence of NaOH, LiCl at 170°C to yield poly(methylene amine). The process of hydrolysis was monitored by IR spectroscopy. The solution properties of poly(methylene amine) and its hydrochloride were investigated by viscosimetry and light scattering. The reduced viscosity of poly (methylene amine) hydrochloride as a function of polymer concentration demonstrated a behavior typical of cationic polyelectrolyte. With decrease in polymer concentration the reduced viscosity of poly(methylene amine) hydrochloride increased gradually. The dynamic light scattering studies also revealed behaviors of a polyelectrolyte. Poly(methylene amine) was reacted with electrophiles to yield novel materials. While the attachment of alkyl group onto the nitrogen would increase nucleophilicity, it would also impose steric hindrance. As a result the degree of substitution on poly(methylene amine) would be governed by both the factors. Therefore, few model reactions with electrophiles were performed on polvinylamine under similar reaction conditions in order to make a comparative evaluation. It was found that under similar reaction conditions the degree of substitution was higher in case of polyvinylamine in comparison with poly (methylene amine).This shows that the steric hindrance outweighs nucleophilicity while deciding degree of substitution of electrophiles on poly(methylene amine). The modification was further extended to its use as an initiator for ring opening polymerization of benzyloxy protected N-carboxyanhydride of z-Lysine. The resulting polymer had an interesting brush like architecture. The solid state morphology of this polymer was investigated by SAXS. The 2D-WAXS diffractograms revealed hexagonal morphology of peptide segments without formation of alpha helices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years the hot water treatment (HW) represents an effective and safe approach for managing postharvest decay. This study reported the effect of an HW (60°C for 60 s and 45°C for 10 min) on brown rot and blue mould respectively. Peaches was found more thermotolerant compared to apple fruit, otherwise Penicillium expansum was more resistant to heat with respect to Monilinia spp. In semi-commercial and commercial trials, the inhibition of brown rot in naturally infected peaches was higher than 78% after 6 days at 0°C and 3 days at 20°C. Moreover, in laboratory trials a 100% disease incidence reduction was obtained by treating artificially infected peaches at 6-12 h after inoculation revealing a curative effect of HW. The expression levels of some genes were evaluated by qRT-PCR. Specifically, the cell wall genes (β-GAL, PL, PG, PME) showed a general decrease of expression level whereas PAL, CHI, HSP70 and ROS-scavenging genes were induced in treated peaches compared to the control ones. Contrarily, HW applied on artificially infected fruit before the inoculum was found to increase brown rot susceptibility. This aspect might be due to an increase of fruit VOCs emission as revealed by PTR-ToF-MS analysis. In addition a microarray experiment was conducted to analyze molecular mechanisms underneath the apple response to heat. Our results showed a largest amount of induced Heat shock proteins (HSPs), Heat shock cognate proteins (HSCs), Heat shock transcription factors (HSTFs) genes found at 1 and 4 hours from the treatment. Those genes required for the thermotolerance process could be involved in induced resistance response. The hypothesis was confirmed by 30% of blue mold disease reduction in artificially inoculated apple after 1 and 4 hours from the treatment. In order to improve peaches quality and disease management during storage, an innovative tool was also used: Da-meter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treatment plants that operate either thermophilic or mesophilic anaerobic digesters with centrifugal dewatering processes have consistently observed densities of fecal coliform and Escherichia coli, both indicator bacteria, that decrease during digestion but then increase after dewatering and storage. The increases have been characterized as two separate phenomena to explain this observation: 1) “Sudden Increase,” or SI, which is defined as the increase that occurs immediately after dewatering and 2) “regrowth,” which is defined as an increase during storage of cake samples over a period of hours or days. The SI observation appears to be more prevalent with biosolids that are generated with thermophilic processes and dewatered by centrifugation. Both thermophilic and mesophilic digesters with centrifuge dewatering processes have observed the regrowth phenomena. This research hypothesizes that the SI phenomenon is due to the presence of viable nonculturable (VNC) bacteria that are reactivated during dewatering. In other words, the bacteria were always present but were not enumerated by standard culturing methods (SCM). Analysis of the E. coli density in thermally treated solids by SCMs and quantitative real-time polymerase chain reaction (qPCR) indicated that E. coli densities are often underestimated by SCM. When analyzed with qPCR, the E. coli density after digestion can be 4-5 orders of magnitude greater than the non-detect levels identified by SCMs, which supports the non-culturable hypothesis. The VNC state describes a condition where bacteria are alive but unable to sustain the metabolic process needed for cellular division. Supplements added to culturing media were investigated to determine if the resuscitation of VNC bacteria could be enhanced. The autoinducer molecules Nhexanoyl- L-Homoserine lactone (C6-HSL), 3-oxo-N-octanoyl-L-Homoserine lactone (3-oxo- C8-HSL), and norepinephrine were unable to induce the resuscitation of VNC E. coli. Additional sampling was performed to determine if autoinducer molecules, peroxides, or other as of yet unknown inhibitory agents and toxins could be removed from biosolids during SCM. Culture media supplemented with the peroxide degrading compounds catalase, α-ketoglutaric acid, and sodium pyruvate was unable to resuscitate non-culturable E. coli. The additions of bentonite and exponential growth phase E. coli cell-free supernatant to culturing media were also unable to increase the culturability of E. coli. To remove inhibitory agents and toxins, a cell washing technique was employed prior to performing SCM; however, this cell washing technique may have increased cellular stresses that inhibited resuscitation since cell densities decreased. A novel laboratory-scale dewatering process was also investigated to determine if the SI and regrowth phenomena observed in full-scale centrifugal dewatering could be mimicked in the laboratory using a lab shearing device. Fecal coliform and E. coli densities in laboratory prepared cake samples were observed to be an order of magnitude higher than full-scale dewatered cakes. Additionally, the laboratory-scale dewatering process was able to resuscitate fecal coliforms and E. coli in stored sludge such that the density increased by 4-5 orders of magnitude from nondetect values. Lastly, the addition of aluminum sulfate during centrifuge dewatering at a full-scale utility produced an increased regrowth of fecal coliforms and E. coli that was sustained for 5 days.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ13C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier 13C due to closing stomata leading to an enrichment of 13C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ13C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ13C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ13C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Groundwater constitutes approximately 30% of freshwater globally and serves as a source of drinking water in many regions. Groundwater sources are subject to contamination with human pathogens (viruses, bacteria and protozoa) from a variety of sources that can cause diarrhea and contribute to the devastating global burden of this disease. To attempt to describe the extent of this public health concern in developing countries, a systematic review of the evidence for groundwater microbially-contaminated at its source as risk factor for enteric illness under endemic (non-outbreak) conditions in these countries was conducted. Epidemiologic studies published in English language journals between January 2000 and January 2011, and meeting certain other criteria, were selected, resulting in eleven studies reviewed. Data were extracted on microbes detected (and their concentrations if reported) and on associations measured between microbial quality of, or consumption of, groundwater and enteric illness; other relevant findings are also reported. In groundwater samples, several studies found bacterial indicators of fecal contamination (total coliforms, fecal coliforms, fecal streptococci, enterococci and E. coli), all in a wide range of concentrations. Rotavirus and a number of enteropathogenic bacteria and parasites were found in stool samples from study subjects who had consumed groundwater, but no concentrations were reported. Consumption of groundwater was associated with increased risk of diarrhea, with odds ratios ranging from 1.9 to 6.1. However, limitations of the selected studies, especially potential confounding factors, limited the conclusions that could be drawn from them. These results support the contention that microbial contamination of groundwater reservoirs—including with human enteropathogens and from a variety of sources—is a reality in developing countries. While microbially-contaminated groundwaters pose risk for diarrhea, other factors are also important, including water treatment, water storage practices, consumption of other water sources, water quantity and access to it, sanitation and hygiene, housing conditions, and socio-economic status. Further understanding of the interrelationships between, and the relative contributions to disease risk of, the various sources of microbial contamination of groundwater can guide the allocation of resources to interventions with the greatest public health benefit. Several recommendations for future research, and for practitioners and policymakers, are presented.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the response in development times of Calanus finmarchicus and Calanus helgolandicus to changes in temperature and food conditions. The ingestion response to temperature was determined in the laboratory, where the copepods C. finmarchicus and C. helgolandicus were fed the diatom Thalassiosira weissflogii (cultivated at 18°C-20°; 12 : 12 light :dark cycle; exponential growth). C. finmarchicus was obtained for experiments from the Gullmar fjord. C. finmarchicus was incubated at in situ temperature (5°C) until the experiments were performed. First-generation cultures were grown in the laboratory at 15°C from the eggs from the Sta. L4 females. During growth both C. finmarchicus and C. helgolandicus cultures were fed a mixture of the cryptophyte Rhodomonas salina, the diatom Thalassiosira weissflogii, and the dinoflagellate Prorocentrum minimum. Five 600-mL glass bottles containing 1400 cells mL**-1 or 5 mg chlorophyll a (Chl a) L**-1 of T. weissflogii (200 mg C) and 1-2 C. finmarchicus or C. helgolandicus copepodite stage 5 (CV) or females were incubated in darkness at series of temperatures between 1°C and 21 ± 0.5°C. Three bottles without copepods served as control. In the C. helgolandicus experiment, T. weissflogii cells were counted at the beginning and end of the experiment in the grazing bottles and controls using a Coulter CounterH (MultisizerTM 3, Beckman Coulter). In the C. finmarchicus experiment, phytoplankton reduction was determined by Chl a measurements. The reduction in phytoplankton during any of the experiments was generally below 20% and never more than 32%. Clearance rates were calculated following Harris et al. (2000).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Helianthus tuberosus L. presenta potencial para producir etanol, sustituto de la nafta, y que deberá incorporarse a la misma en un 5% a partir del 2010 en Argentina. Hay antecedentes que señalan que a partir de 50 toneladas de tubérculos pueden obtenerse 4500 l de etanol. En este trabajo se comparó el rendimiento de dos variedades de topinambur regado con agua residual urbana o cloacal (AC) y agua subterránea (AS). El ensayo se realizó en la planta de tratamiento de agua cloacal de Obras Sanitarias Mendoza en el Departamento Tunuyán (33°32’89’’ S y 69°00’80’’ O), Mendoza, Argentina. El potencial para producir bioetanol se estimó a partir de la cantidad de hidratos de carbono fermentables en los tubérculos. El rendimiento de tubérculos presentó diferencias entre los tratamientos de riego, siendo de 177750 kg/ha en AC y de 144000 kg/ha en AS. La estimación del potencial para producir etanol generó un valor de 15000 l de alcohol en las parcelas regadas con AC y 13000 l en las regadas con AS. Para obtener 1 l de alcohol a partir de los tubérculos serían necesarios alrededor de 11 kg, relacionado con un valor de sólidos solubles de 16% en los mismos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El aceite de colza es comestible pero también puede utilizarse en la producción de biodiesel. Cuando el destino es el energético, el cultivo puede regarse con aguas residuales urbanas o cloacales. La mayor proporción del uso de éstas en el mundo ocurre en regiones áridas donde otras fuentes de agua son escasas, situación que se plantea en los oasis irrigados de Mendoza. En este trabajo se comparó el rendimiento de un cultivar invernal de colza regado con agua cloacal (AC) y agua subterránea (AS), y su potencial para producir biodiesel. La experiencia se llevó a cabo en una planta de tratamiento de agua cloacal de Obras Sanitarias en el departamento Tunuyán (33° 32’ 89’’ S; 69° 00’ 80’’ O; 859 m snm). El rendimiento de semilla de AC fue significativamente mayor que el de AS (7690 y 3886 kg/ha, respectivamente). La cantidad de biodiesel factible de producir por cada hectárea de cultivo asciende a 2800 kg en el tratamiento AC y a 1400 kg en AS. El uso de aguas residuales urbanas genera un nicho interesante para la producción de biocombustibles, utilizando un recurso hídrico con limitaciones para producir alimentos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With each cellular generation, oxygenic photoautotrophs must accumulate abundant protein complexes that mediate light capture, photosynthetic electron transport and carbon fixation. In addition to this net synthesis, oxygenic photoautotrophs must counter the light-dependent photoinactivation of Photosystem II (PSII), using metabolically expensive proteolysis, disassembly, resynthesis and re-assembly of protein subunits. We used growth rates, elemental analyses and protein quantitations to estimate the nitrogen (N) metabolism costs to both accumulate the photosynthetic system and to maintain PSII function in the diatom Thalassiosira pseudonana, growing at two pCO2 levels across a range of light levels. The photosynthetic system contains c. 15-25% of total cellular N. Under low growth light, N (re)cycling through PSII repair is only c. 1% of the cellular N assimilation rate. As growth light increases to inhibitory levels, N metabolite cycling through PSII repair increases to c. 14% of the cellular N assimilation rate. Cells growing under the assumed future 750 ppmv pCO2 show higher growth rates under optimal light, coinciding with a lowered N metabolic cost to maintain photosynthesis, but then suffer greater photoinhibition of growth under excess light, coincident with rising costs to maintain photosynthesis. We predict this quantitative trait response to light will vary across taxa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (400 ?atm) and high pCO2 (1300 ?atm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was reduced by 59% under high pCO2, with sediment dissolution explaining ~ 50% of this decrease; net calcification of corals and calcified algae remained positive but was reduced by 29% under elevated pCO2. These results show that, despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might transition to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As anthropogenic climate change is an ongoing concern, scientific investigations on its impacts on coral reefs are increasing. Although impacts of combined ocean acidification (OA) and temperature stress (T) on reef-building scleractinian corals have been studied at the genus, species and population levels, there are little data available on how individual corals respond to combined OA and anomalous temperatures. In this study, we exposed individual colonies of Acropora digitifera, Montipora digitata and Porites cylindrica to four pCO2-temperature treatments including 400 µatm-28 °C, 400 µatm-31 °C, 1000 µatm-28 °C and 1000 µatm-31 °C for 26 days. Physiological parameters including calcification, protein content, maximum photosynthetic efficiency, Symbiodinium density, and chlorophyll content along with Symbiodinium type of each colony were examined. Along with intercolonial responses, responses of individual colonies versus pooled data to the treatments were investigated. The main results were: 1) responses to either OA or T or their combination were different between individual colonies when considering physiological functions; 2) tolerance to either OA or T was not synonymous with tolerance to the other parameter; 3) tolerance to both OA and T did not necessarily lead to tolerance of OA and T combined (OAT) at the same time; 4) OAT had negative, positive or no impacts on physiological functions of coral colonies; and 5) pooled data were not representative of responses of all individual colonies. Indeed, the pooled data obscured actual responses of individual colonies or presented a response that was not observed in any individual. From the results of this study we recommend improving experimental designs of studies investigating physiological responses of corals to climate change by complementing them with colony-specific examinations.