997 resultados para W(100)
Resumo:
Kirje 2.11.1966
Resumo:
Ce travail décrit une méthode optique pour établir l'ordre chronologique de la séquence entre les impressions électrophotographiques (imprimantes laser et photocopieurs) et les signatures apposées au stylo à bille, sans croisement. Les auteurs ont utilisé un microscope optique avec des grossissements allant de 100 à 500 fois qui permettent de distinguer l'apparence des microparticules de toner selon qu'elles se situent au-dessus ou au-dessous de l'encre de stylo à billes. Les tests à l'aveugle ont montré un taux de réussite de 100 % permettant ainsi de valider les résultats proposés par Aginsky (2002).
Resumo:
The peroxisome proliferator-activated receptor (PPAR) is a member of the steroid hormone receptor superfamily and is activated by a variety of fibrate hypolipidaemic drugs and non-genotoxic rodent hepatocarcinogens that are collectively termed peroxisome proliferators. A key marker of peroxisome proliferator action is the peroxisomal enzyme acyl CoA oxidase, which is elevated about ten fold in the livers of treated rodents. Additional peroxisome proliferator responsive genes include other peroxisomal beta-oxidation enzymes and members of the cytochrome P450 IVA family. A peroxisome proliferator response element (PPRE), consisting of an almost perfect direct repeat of the sequence TGACCT spaced by a single base pair, has been identified in the upstream regulatory sequences of each of these genes. The retinoid X receptor (RXR) forms a heterodimer with PPAR and binds to the PPRE. Furthermore, the RXR ligand, 9-cis retinoic acid, enhances PPAR action. Retinoids may therefore modulate the action of peroxisome proliferators and PPAR may interfere with retinoid action, perhaps providing one mechanism to explain the toxicity of peroxisome proliferators. Interestingly, a variety of fatty acids can activate PPAR supporting the suggestion that fatty acids, or their acyl CoA derivatives, may be the natural ligands of PPAR and that the physiological role of PPAR is to regulate fatty acid homeostasis. Taken together, the discovery of PPAR has opened up new opportunities in understanding how lipid homeostasis is regulated, how the fibrate hypolipidaemic drugs may act and should lead to improvements in the assessment of human risk from peroxisome proliferators based upon a better understanding of their mechanism of action.
Resumo:
Studies assessing skin irritation to chemicals have traditionally used laboratory animals; however, such methods are questionable regarding their relevance for humans. New in vitro methods have been validated, such as the reconstructed human epidermis (RHE) model (Episkin®, Epiderm®). The comparison (accuracy) with in vivo results such as the 4-h human patch test (HPT) is 76% at best (Epiderm®). There is a need to develop an in vitro method that better simulates the anatomo-pathological changes encountered in vivo. To develop an in vitro method to determine skin irritation using human viable skin through histopathology, and compare the results of 4 tested substances to the main in vitro methods and in vivo animal method (Draize test). Human skin removed during surgery was dermatomed and mounted on an in vitro flow-through diffusion cell system. Ten chemicals with known non-irritant (heptylbutyrate, hexylsalicylate, butylmethacrylate, isoproturon, bentazon, DEHP and methylisothiazolinone (MI)) and irritant properties (folpet, 1-bromohexane and methylchloroisothiazolinone (MCI/MI)), a negative control (sodiumchloride) and a positive control (sodiumlaurylsulphate) were applied. The skin was exposed at least for 4h. Histopathology was performed to investigate irritation signs (spongiosis, necrosis, vacuolization). We obtained 100% accuracy with the HPT model; 75% with the RHE models and 50% with the Draize test for 4 tested substances. The coefficients of variation (CV) between our three test batches were <0.1, showing good reproducibility. Furthermore, we reported objectively histopathological irritation signs (irritation scale): strong (folpet), significant (1-bromohexane), slight (MCI/MI at 750/250ppm) and none (isoproturon, bentazon, DEHP and MI). This new in vitro test method presented effective results for the tested chemicals. It should be further validated using a greater number of substances; and tested in different laboratories in order to suitably evaluate reproducibility.
Resumo:
Entre enero y mayo de 1986 100 colectores de larvas fueron instaldas en Bahía Paracas (13º50' S, 76º16' W) en áreas de cultivo de la concha de abanico Argopecten purpuratus con el fin de obtener semillas de bivalvos de valor económico. Mayormente con el objetivo de determinar el mejor tiempo para la instalación de los colectores entre enero de 1985 y agosto de 1986 se efectuaron determinaciones mensuales de factores abióticos (temperatura, salinidad, oxígeno, H1S) de las aguas cerca del fondo del mar, la concentración de clorofila "a" y del índice gonadosomático de adultos de A.purpuratus, además de análisis cualitativos de muestras del plancton. Las especies dominantes en número de individuos encontradas en los 82 colectores recuperados después de dos meses de exposición fueron el falso chorito Semimytilus algosus (70 %) y la almejita blanca Petricola sp. (27 %), ambas especies de valor económico. Solo de 0.8 % de la semilla era A. purpuratus, lo que se atribuyó mayormente al material inadecuado usado para los colectores, pero también a mareas rojas que ocurrieron durante el tiempo del experimento.
Resumo:
Background and aims: V itamin D is an important modulator o fnumerous c ellular processes, including innate and adaptive immunepathways. A recent large-scale genetic validation study performed withinthe framework of the Swiss Hepatitis C Cohort S tudy has demonstratedan association between t he 1α-hydroxylase promoter single nucleotidepolymorphism CYP27B1-1260 rs10877012 and sustained virologicresponse (SVR) after pegylated interferon-α ( PEG-IFN-α) plus ribavirintreatment of c hronic hepatitis C in patients w ith a p oor-response IL28Bgenotype. This suggests an intrinsic role o f vitamin D signaling in theresponse t o treatment of chronic hepatitis C, especially in patients withlimited sensitivity to IFN-α. In the present study, we investigated theeffect of 1,25-(OH)2 v itamin D3 (calcitriol) alone or in combination withIFN-α on the hepatitis C virus (HCV) life cycle in vitro.Methods: H uh-7.5 cells harboring Con1- or JFH-1-derived HCVreplicons or cell culture-derived HCV were exposed to 0.1-100 nMcalcitriol ± 1 -100 IU/ml IFN-α. The effect on HCV RNA replication andviral particle production was investigated by quantitative r eal-time PCR,immunoblot analyses, and infectivity titration analyses. The expression ofinterferon-stimulated genes (ISGs) and of calcitriol target genes wasassessed by quantitative real-time PCR.Results: Calcitriol had no relevant effect on the viability of Huh-7.5 cells.Calcitriol strongly induced and repressed the expression of the calcitrioltarget genes CYP24A1 and CCNC, respectively, confirming that Huh-7.5cells c an respond to c alcitriol signaling. P hysiological doses of calcitrioldid not significantly a ffect HCV RNA replication or i nfectious particleproduction in vitro, and calcitriol alone h ad no significant effect on theexpression of several ISGs. However, calcitriol in combination with IFN-αsubstantially increased the expression of ISGs compared to IFN-α alone.In addition, calcitriol plus IFN-α s ynergistically inhibited HCV RNAreplication.Conclusions: C alcitriol at physiological concentrations and IFN-α a ctsynergistically on the expression of I SGs and HCV RNA replication i nvitro. Experiments exploring the underlying mechanisms are underway.
Resumo:
Kirje 2.3.1962
Resumo:
A class of secreted poxvirus tumor necrosis factor (TNF)-binding proteins has been isolated from Tanapox-infected cell supernatants. The inhibitor bound to a TNF-affinity column and was identified as the product of the 2L gene. Sequence analysis of 2L family members from other yatapoxviruses and swinepox virus yielded no sequence homology to any known cellular gene. The expressed Tanapox virus 2L protein bound to human TNF with high affinity (K(d) = 43 pM) and exhibits an unusually slow off-rate. However, 2L is unable to bind to a wide range of human TNF family members. The 2L protein can inhibit human TNF from binding to TNF receptors I and II as well as block TNF-induced cytolysis. Thus, Tanapox virus 2L represents an inhibitor of human TNF and offers a unique strategy with which to modulate TNF activity.
Resumo:
Échelle(s) : [ca 1:2 440 000], échelle 100 kilomètres [= 4,1 cm]