905 resultados para Vortex sheet
Resumo:
Southern Hemisphere (SH) polar mesospheric clouds (PMCs), also known as noctilucent clouds, have been observed to be more variable and, in general, dimmer than their Northern Hemisphere (NH) counterparts. The precise cause of these hemispheric differences is not well understood. This paper focuses on one aspect of the hemispheric differences: the timing of the PMC season onset. Observations from the Aeronomy of Ice in the Mesosphere satellite indicate that in recent years the date on which the PMC season begins varies much more in the SH than in the NH. Using the Canadian Middle Atmosphere Model, we show that the generation of sufficiently low temperatures necessary for cloud formation in the SH summer polar mesosphere is perturbed by year‐to‐year variations in the timing of the late‐spring breakdown of the SH stratospheric polar vortex. These stratospheric variations, which persist until the end of December, influence the propagation of gravity waves up to the mesosphere. This adds a stratospheric control to the temperatures in the polar mesopause region during early summer, which causes the onset of PMCs to vary from one year to another. This effect is much stronger in the SH than in the NH because the breakdown of the polar vortex occurs much later in the SH, closer in time to the PMC season.
Resumo:
A theory of available energy for axisymmetric circulations is presented. The theory is a generalization of the classical theory of available potential energy, in that it accounts for both thermal and angular momentum constraints on the circulation. The generalization relies on the Hamiltonian structure of the (conservative) dynamics, is exact at finite amplitude, and has a local form. Application of the theory is presented for the case of an axisymmetric vortex on an f -plane in the context of the Boussinesq equations.
Resumo:
General circulation models predict a rapid decrease in sea ice extent with concurrent increases in near surface air temperature and precipitation in the Arctic over the 21st century. This has led to suggestions that some Arctic land ice masses may experience an increase in accumulation due to enhanced evaporation from a seasonally sea ice free Arctic Ocean. To investigate the impact of this phenomenon on Greenland ice sheet climate and surface mass balance (SMB) a regional climate model, HadRM3, was used to force an insolation-temperature melt SMB model. A set of experiments designed to investigate the role of sea ice independently from sea surface temperature (SST) forcing are described. In the warmer and wetter SI + SST simulation Greenland experiences a 23% increase in winter SMB but 65% reduced summer SMB, resulting in a net decrease in the annual value. This study shows that sea ice decline contributes to the increased winter balance, causing 25% of the increase in winter accumulation; this is largest in eastern Greenland as the result of increased evaporation in the Greenland Sea. These results indicate that the seasonal cycle of Greenland's SMB will increase dramatically as global temperatures increase, with the largest changes in temperature and precipitation occurring in winter. This demonstrates that the accurate prediction of changes in sea ice cover is important for predicting Greenland SMB and ice sheet evolution.
Resumo:
Interpretation of ice-core records is currently limited by paucity of modelling at adequate temporal and spatial resolutions. Several key questions relate to mechanisms of polar amplification and inter-hemispheric coupling on glacial/interglacial timescales. Here, we present the first results from a large set of global ocean–atmosphere climate model ‘snap-shot’ simulations covering the last 120 000 years using the Hadley Centre climate model (HadCM3) at up to 1 kyr temporal resolution. Two sets of simulations were performed in order to examine the roles of orbit and greenhouse gases versus ice-sheet forcing of orbital-scale climate change. A series of idealised Heinrich events were also simulated, but no changes to aerosols or vegetation were prescribed. This paper focuses on high latitudes and inter-hemispheric linkages. The simulations reproduce polar temperature trends well compared to ice-core reconstructions, although the magnitude is underestimated. Polar amplification varies with obliquity, but this variability is dampened by including variations in land ice coverage, while the overall amplification factor increases. The relatively constant amplification of Antarctic temperatures (with ice-sheet forcing included) suggests it is possible to use Antarctic temperature reconstructions to estimate global changes (which are roughly half the magnitude). Atlantic Ocean overturning circulation varies considerably only with the introduction of Northern Hemisphere ice sheets, but only weakens in the North Atlantic in the deep glacial, when ocean–sea-ice feedbacks result in the movement of the region of deep convection to lower latitudes and with the introduction of freshwater to the surface North Atlantic in order to simulate Heinrich events.
Resumo:
Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than preindustrial (CO2~280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs). We present a series of experiments to investigate the impact of deglacial meltwater on the Atlantic Meridional Overturning Circulation (AMOC) and Antarctic temperature. It is well known that a slowed AMOC would increase southern sea surface temperature (SST) through the bipolar seesaw and observational data suggests that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. We present two 800 kyr transient simulations using the Intermediate Complexity model GENIE-1 which demonstrate that meltwater forcing generates transient southern warming that is consistent with the timing of WPTs, but is not sufficient (in this single parameterisation) to reproduce the magnitude of observed warmth. In order to investigate model and boundary condition uncertainty, we present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 BP. Only with consideration of the possible feedback of West Antarctic Ice Sheet (WAIS) retreat does it become possible to simulate the magnitude of observed warming.
Resumo:
The flow patterns generated by a pulsating jet used to study hydrodynamic modulated voltammetry (HMV) are investigated. It is shown that the pronounced edge effect reported previously is the result of the generation of a vortex ring from the pulsating jet. This vortex behaviour of the pulsating jet system is imaged using a number of visualisation techniques. These include a dye system and an electrochemically generated bubble stream. In each case a toroidal vortex ring was observed. Image analysis revealed that the velocity of this motion was of the order of 250 mm s−1 with a corresponding Reynolds number of the order of 1200. This motion, in conjunction with the electrode structure, is used to explain the strong ‘ring and halo’ features detected by electrochemical mapping of the system reported previously.
Resumo:
A strong link exists between stratospheric variability and anomalous weather patterns at the earth’s surface. Specifically, during extreme variability of the Arctic polar vortex termed a “weak vortex event,” anomalies can descend from the upper stratosphere to the surface on time scales of weeks. Subsequently the outbreak of cold-air events have been noted in high northern latitudes, as well as a quadrupole pattern in surface temperature over the Atlantic and western European sectors, but it is currently not understood why certain events descend to the surface while others do not. This study compares a new classification technique of weak vortex events, based on the distribution of potential vorticity, with that of an existing technique and demonstrates that the subdivision of such events into vortex displacements and vortex splits has important implications for tropospheric weather patterns on weekly to monthly time scales. Using reanalysis data it is found that vortex splitting events are correlated with surface weather and lead to positive temperature anomalies over eastern North America of more than 1.5 K, and negative anomalies over Eurasia of up to −3 K. Associated with this is an increase in high-latitude blocking in both the Atlantic and Pacific sectors and a decrease in European blocking. The corresponding signals are weaker during displacement events, although ultimately they are shown to be related to cold-air outbreaks over North America. Because of the importance of stratosphere–troposphere coupling for seasonal climate predictability, identifying the type of stratospheric variability in order to capture the correct surface response will be necessary.
Resumo:
The complex cyclical nature of Pleistocene climate, driven by the evolving orbital configuration of the Earth, is well known but not well understood. A major climatic transition took place at the Mid-Brunhes Event (MBE), ca. 430 ka ago after which the amplitude of the ca.100 ka climate oscillations increased, with substantially warmer interglacials, including periods warmer than present. Recent modelling has indicated that while the timing of these warmer-than-present transient (WPT) events is consistent with southern warming due to a deglaciation-forced slowdown of the Atlantic Meridional Overturning Circulation, the magnitude of warming requires a local amplification, for which a candidate is the feedback of significant West Antarctic Ice Sheet (WAIS) retreat. We here extend this argument, based on the absence of WPTs in the early ice core record (450–800 ka ago), to hypothesize that the MBE could be a manifestation of decreased WAIS stability, triggered by ongoing subglacial erosion.
Resumo:
The stability of stationary flow of a two-dimensional ice sheet is studied when the ice obeys a power flow law (Glen's flow law). The mass accumulation rate at the top is assumed to depend on elevation and span and the bed supporting the ice sheet consists of an elastic layer lying on a rigid surface. The normal perturbation of the free surface of the ice sheet is a singular eigenvalue problem. The singularity of the perturbation at the front of the ice sheet is considered using matched asymptotic expansions, and the eigenvalue problem is seen to reduce to that with fixed ice front. Numerical solution of the perturbation eigenvalue problem shows that the dependence of accumulation rate on elevation permits the existence of unstable solutions when the equilibrium line is higher than the bed at the ice divide. Alternatively, when the equilibrium line is lower than the bed, there are only stable solutions. Softening of the bed, expressed through a decrease of its elastic modulus, has a stabilising effect on the ice sheet.
Resumo:
The central sector of the last British–Irish Ice Sheet (BIIS) was characterised by considerable complexity, both in terms of its glacial stratigraphy and geomorphological signature. This complexity is reflected by the large number and long history of papers that have attempted to decipher the glaciodynamic history of the region. Despite significant advances in our understanding, reconstructions remain hotly debated and relatively local, thereby hindering attempts to piece together BIIS dynamics. This paper seeks to address these issues by reviewing geomorphological mapping evidence of palimpsest flow signatures and providing an up-to-date stratigraphy of the region. Reconciling geomorphological and sedimentological evidence with relative and absolute dating constraints has allowed us to develop a new six-stage glacial model of ice-flow history and behaviour in the central sector of the last BIIS, with three major phases of glacial advance. This includes: I. Eastwards ice flow through prominent topographic corridors of the north Pennines; II. Cessation of the Stainmore ice flow pathway and northwards migration of the North Irish Sea Basin ice divide; III. Stagnation and retreat of the Tyne Gap Ice Stream; IV. Blackhall Wood–Gosforth Oscillation; V. Deglaciation of the Solway Lowlands; and VI. Scottish Re-advance and subsequent final retreat of ice out of the central sector of the last BIIS. The ice sheet was characterised by considerable dynamism, with flow switches, initiation (and termination) of ice streams, draw-down of ice into marine ice streams, repeated ice-marginal fluctuations and the production of large volumes of meltwater, locally impounded to form ice-dammed glacial lakes. Significantly, we tie this reconstruction to work carried out and models developed for the entire ice sheet. This therefore situates research in the central sector within contemporary understanding of how the last BIIS evolved over time.
Resumo:
This study of landscape evolution presents both new modern and palaeo process-landform data, and analyses the behaviour of the Antarctic Peninsula Ice Sheet through the Last Glacial Maximum (LGM), the Holocene and to the present day. Six sediment-landform assemblages are described and interpreted for Ulu Peninsula, James Ross Island, NE Antarctic Peninsula: (1) the Glacier Ice and Snow Assemblage; (2) the Glacigenic Assemblage, which relates to LGM sediments and comprises both erratic-poor and erratic-rich drift, deposited by cold-based and wet-based ice and ice streams respectively; (3) the Boulder Train Assemblage, deposited during a Mid-Holocene glacier readvance; (4) the Ice-cored Moraine Assemblage, found in front of small cirque glaciers; (5) the Paraglacial Assemblage including scree, pebble-boulder lags, and littoral and fluvial processes; and (6) the Periglacial Assemblage including rock glaciers, protalus ramparts, blockfields, solifluction lobes and extensive patterned ground. The interplay between glacial, paraglacial and periglacial processes in this semi-arid polar environment is important in understanding polygenetic landforms. Crucially, cold-based ice was capable of sediment and landform genesis and modification. This landsystem model can aid the interpretation of past environments, but also provides new data to aid the reconstruction of the last ice sheet to overrun James Ross Island.
Resumo:
The Antarctic Peninsula region is currently undergoing rapid environmental change, resulting in the thinning, acceleration and recession of glaciers and the sequential collapse of ice shelves. It is important to view these changes in the context of long-term palaeoenvironmental complexity and to understand the key processes controlling ice sheet growth and recession. In addition, numerical ice sheet models require detailed geological data for tuning and testing. Therefore, this paper systematically and holistically reviews published geological evidence for Antarctic Peninsula Ice Sheet variability for each key locality throughout the Cenozoic, and brings together the prevailing consensus of the extent, character and behaviour of the glaciations of the Antarctic Peninsula region. Major contributions include a downloadable database of 186 terrestrial and marine calibrated dates; an original reconstruction of the LGM ice sheet; and a new series of isochrones detailing ice sheet retreat following the LGM. Glaciation of Antarctica was initiated around the Eocene/Oligocene transition in East Antarctica. Palaeogene records of Antarctic Peninsula glaciation are primarily restricted to King George Island, where glacigenic sediments provide a record of early East Antarctic glaciations, but with modification of far-travelled erratics by local South Shetland Island ice caps. Evidence for Neogene glaciation is derived primarily from King George Island and James Ross Island, where glaciovolcanic strata indicate that ice thicknesses reached 500–850 m during glacials. This suggests that the Antarctic Peninsula Ice Sheet draped, rather than drowned, the topography. Marine geophysical investigations indicate multiple ice sheet advances during this time. Seismic profiling of continental shelf-slope deposits indicates up to ten large advances of the Antarctic Peninsula Ice Sheet during the Early Pleistocene, when the ice sheet was dominated by 40 kyr cycles. Glacials became more pronounced, reaching the continental shelf edge, and of longer duration during the Middle Pleistocene. During the Late Pleistocene, repeated glacials reached the shelf edge, but ice shelves inhibited iceberg rafting. The Last Glacial Maximum (LGM) occurred at 18 ka BP, after which transitional glaciomarine sediments on the continental shelf indicate ice-sheet retreat. The continental shelf contains large bathymetric troughs, which were repeatedly occupied by large ice streams during Pleistocene glaciations. Retreat after the LGM was episodic in the Weddell Sea, with multiple readvances and changes in ice-flow direction, but rapid in the Bellingshausen Sea. The late Holocene Epoch was characterised by repeated fluctuations in palaeoenvironmental conditions, with associated glacial readvances. However, this has been subsumed by rapid warming and ice-shelf collapse during the twentieth century.