950 resultados para Volatile fatty acid (vfa)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive method for the determination of 30 kinds of free fatty acids (FFAs, C-1-C-30) with 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4,5-f] 9,10-phenan- threne (TSPP) as labeling reagent and using high performance liquid chromatography with fluorescence detection and identification by online postcolumn mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion mode (HPLC/MS/APCI) has been developed. TSPP could easily and quickly label FFAs in the presence of K2CO3 catalyst at 90 degrees C for 30 min in N,N-dimethylformamide (DMF) solvent, and maximal labeling yields close to 100% were observed with a 5-fold excess of molar reagent. Derivatives were stable enough to be efficiently analyzed by high performance liquid chromatography. TSPP was introduced into fatty acid molecules and effectively augmented MS ionization of fatty acid derivatives and led to regular MS and MS/MS information. The collision induced cleavage of protonated molecular ions formed specific fragment ions at m/z [MH](+)(molecular ion), m/z [M'+CH2CH2](+)(M' was molecular mass of the corresponding FFA) and m/z 295.0 (the, mass of protonated molecular core structure of TSPP). Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C-8 column (4.6 x 150 mm, 5 mu m, Agilent) with a good baseline resolution in combination with a gradient elution. Linear ranges of 30 FFAs are 2.441 x 10(-3) to 20 mu mol/L, detection limits are 3.24 similar to 36.97 fmol (injection volume 10 mu L, at a signal-to-noise ratio of 3, S/N 3:1). The mean interday precision ranged from 93.4 to 106.2% with the largest mean coefficients of variation (R.S.D.) < 7,5%. The mean intraday precision for all standards was < 6.4% of the expected concentration. Excellent linear responses were observed with correlation coefficients of > 0.9991. Good compositional data could be obtained from the analysis of extracted fatty acids from as little as 200 mg of bryophyte plant samples.Therefore, the facile TSPP derivatization coupled with HPLC/MS/APCI analysis allowed the development of a highly sensitive method for the quantitation of trace levels of short and long chain fatty acids from biological and natural environmental samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and sensitive high-performance liquid chromatographic (HPLC) method with fluorescence detection and mass spectrometric identification has been developed for analysis of 30 long-chain and short-chain free Fatty acids (FFAs). The fatty acids were derivatized to their esters with 1-[2-(p-toluenesulfonate)ethyl]-2-phenylimidazole-[4,5-f]-9,10-phenanthrene (TSPP) in N,N-dimethylformamide (DMF) at 90 degrees C with anhydrous K2CO3 as catalyst. A mixture Of C-1-C-30 fatty acids was completely separated within 60 min by gradient elution on a reversed-phase C-8 column. Qualitative identification of the acids was performed by atmospheric-pressure chemical ionization mass spectrometry (APCI-MS) in positive-ion mode. The fluorescence excitation and emission wavelengths were 260 and 380 nm, respectively. Quantitative determination of the 30 acids in two Tibetan medicines Gentiana straminea and G. dahurica was performed. The results indicated that the medicines contained many FFAs. Linear correlation coefficients for the FFA derivatives were > 0.9991. Relative standard deviations (RSDs, n = 6) for the fatty acid derivatives were < 3%. Detection limits (at a signal-to-noise ratio of 3:1) were 3.1-38 fmol. When the fatty acid derivatives were determined in the two real samples results were satisfactory and the sensitivity and reproducibility of the method were good.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive method for the determination of free fatty acids using 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-dimidazol-1-yl) ethyl-p-toluenesuIfonate (ANITS) as tagging reagent with fluorescence detection has been developed. ANITS could easily and quickly label fatty acids in the presence of the K2CO3 catalyst at 90 degrees C for 40 min in N,N-dimethylformamide solvent. From the extracts of rape bee pollen samples, 20 free fatty acids were sensitively determined. Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C8 column by HPLC in conjunction with gradient elution. The corresponding derivatives were identified by post-column APCI/MS in positive-ion detection mode. ANITS-fatty acid derivatives gave an intense molecular ion peak at mlz [M+H](+); with MS/MS analysis, the collision-induced dissociation spectra of m/z [M+H](+) produced the specific fragment ions at mlz [M-345](+) and mlz 345.0 (here, m/z 345 is the core structural moiety of the ANITS molecule). The fluorescence excitation and emission wavelengths of the derivatives were lambda(ex) = 250 nm and lambda(em) = 512 nm, respectively. Linear correlation coefficients for all fatty acid derivatives are > 0.9999. Detection limits, at a signal-to-noise ratio of 3 : 1, are 24.76-98.79 fmol for the labeled fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and sensitive method for the determination of free fatty acids (FFAs) using acridone-9-ethyl-p-toluenesulfonate (AETS) as a fluorescence derivatization reagent by high performance liquid chromatography (HPLC) has been developed. Free fatty acid derivatives were separated on an Eclipse XDB-C-8 column with a good baseline resolution and detected with the fluorescence of which excitation and emission wavelengths of derivatives were set at lambda(ex) 404 and lambda(em) 440 nm, respectively. Identification of 19 fatty acid derivatives was carried out by online post-column mass spectrometry with an atmospheric pressure chemical ionization (APCI) source under positive-ion detection mode. Nineteen FFAs from the extract of Lomatogonium rotatum are sensitively determined. The results indicate that the plant Lomatogonium rotatum is enriched with an abundance of FFAs and FFAs of higher contents, which mainly focus on even carbon atoms, C-14, C-16, and C-18. The validation of the method including linearity, repeatability, and detection limits was examined. Most linear correlation coefficients for fatty acid derivatives are > 0.9989, and detection limits (at signal-to-noise of 3: 1) are 12.3-43.7 fmol. The relative standard deviations (RSDs) of the peak areas and retention times for 19 FFAs standards are < 2.24% and 0.45%, respectively. The established method is rapid and reproducible for the separation determination of FFAs from the extract of Lomatogonium rotatum with satisfactory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and sensitive method for the determination of short and long-chain fatty acids using high-performance liquid chromatography with fluorimetric detection has been developed. The fatty acids were derivatized to their corresponding esters with 9-(2-hydroxyethyl)-carbazole (HEC) in acetonitrile at 60 degreesC with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride as a coupling agent in the presence of 4-dimethylaminopyridine (DMAP). A mixture of esters of C-1-C-20 fatty acids was completely separated within 38 min in conjunction with a gradient elution on a reversed-phase C-18 column. The maximum fluorescence emission for the derivatized fatty acids is at 365 nm (lambda (ex) 335 nm). Studies on derivatization conditions indicate that fatty acids react proceeded rapidly and smoothly with HEC in the presence of EDC and DMAP in acetonitrile to give the corresponding sensitively fluorescent derivatives. The application of this method to the analysis of long chain fatty acids in plasma is also investigated. The LC separation shows good selectivity and reproducibility for fatty acids derivatives. The R.S.D. (n = 6) for each fatty acid derivative are <4%. The detection limits are at 45-68 fmol levels for C-14-C-20 fatty acids and even lower levels for fatty acids. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Polyunsaturated fatty acids (PUFAs) modulate immune responses particularly by affecting T cell function and are applied clinically as adjuvant immunosuppressants in the treatment of various inflammatory diseases. However, the molecular mechanisms of PUFA-induced immunosuppressive effects are not yet elucidated. Membrane lipid rafts are functional plasma membrane microdomains characterized by a unique lipid environment. Since lipid interactions are crucial for the formation of lipid rafts, the immunomodulatory effects of PUFAs may be due to changes of fatty acid composition in lipid rafts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotinic acid is one of the most effective agents for both lowering triglycerides and raising HDL. However, the side effect of cutaneous flushing severely limits patient compliance. As nicotinic acid stimulates the GPCR GPR109A and Gi/Go proteins, here we dissected the roles of G proteins and the adaptor proteins, beta-arrestins, in nicotinic acid-induced signaling and physiological responses. In a human cell line-based signaling assay, nicotinic acid stimulation led to pertussis toxin-sensitive lowering of cAMP, recruitment of beta-arrestins to the cell membrane, an activating conformational change in beta-arrestin, and beta-arrestin-dependent signaling to ERK MAPK. In addition, we found that nicotinic acid promoted the binding of beta-arrestin1 to activated cytosolic phospholipase A2 as well as beta-arrestin1-dependent activation of cytosolic phospholipase A2 and release of arachidonate, the precursor of prostaglandin D2 and the vasodilator responsible for the flushing response. Moreover, beta-arrestin1-null mice displayed reduced cutaneous flushing in response to nicotinic acid, although the improvement in serum free fatty acid levels was similar to that observed in wild-type mice. These data suggest that the adverse side effect of cutaneous flushing is mediated by beta-arrestin1, but lowering of serum free fatty acid levels is not. Furthermore, G protein-biased ligands that activate GPR109A in a beta-arrestin-independent fashion may represent an improved therapeutic option for the treatment of dyslipidemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological, biochemical, animal model and clinical trial data described in this overview strongly suggest that polyunsaturated fatty acids, particularly n-6 fatty acids, have a role in the pathogenesis and treatment of multiple sclerosis (MS). Data presented provides further evidence for a disturbance in n-6 fatty acid metabolism in MS. Disturbance of n-6 fatty acid metabolism and dysregulation of cytokines are shown to be linked and a "proof of concept clinical trial" further supports such a hypothesis. In a randomised double-blind, placebo controlled trial of a high dose and low dose selected GLA (18:3n-6)-rich oil and placebo control, the high dose had a marked clinical effect in relapsing-remitting MS, significantly decreasing the relapse rate and the progression of disease. Laboratory findings paralleled clinical changes in the placebo group in that production of mononuclear cell pro-inflammatory cytokines (TNF-alpha, IL-1 beta) was increased and anti-inflammatory TGF-beta markedly decreased with loss of membrane n-6 fatty acids linoleic (18:2n-6) and arachidonic acids (20:4n-6). In contrast there were no such changes in the high dose group. The improvement in disability (Expanded Disability Status Scale) in the high dose suggests there maybe a beneficial effect on neuronal lipids and neural function in MS. Thus disturbed n-6 fatty acid metabolism in MS gives rise to loss of membrane long chain n-6 fatty acids and loss of the anti-inflammatory regulatory cytokine TGF-beta, particularly during the relapse phase, as well as loss of these important neural fatty acids for CNS structure and function and consequent long term neurological deficit in MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis: Abnormalities of glucose and fatty acid metabolism in diabetes are believed to contribute to the development of oxidative stress and the long term vascular complications of the disease therefore the interactions of glucose and long chain fatty acids on free radical damage and endogenous antioxidant defences were investigated in vascular smooth muscle cells. Methods: Porcine vascular smooth muscle cells were cultured in 5 mmol/l or 25 mmol/l glucose for ten days. Fatty acids, stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and gamma-linolenic acid (18:3) were added with defatted bovine serum albumin as a carrier for the final three days. Results. Glucose (25 mmol/l) alone caused oxidative stress in the cells as evidenced by free radical-mediated damage to DNA, lipids, and proteins. The addition of fatty acids (0.2 mmol/l) altered the profile of free radical damage; the response was J-shaped with respect to the degree of unsaturation of each acid, and oleic acid was associated with least damage. The more physiological concentration (0.01 mmol/l) of gamma-linolenic acids was markedly different in that, when added to 25 mmol/l glucose it resulted in a decrease in free radical damage to DNA, lipids and proteins. This was due to a marked increase in levels of the antioxidant, glutathione, and increased gene expression of the rate-limiting enzyme in glutathione synthesis, gamma-glutamylcysteine synthetase. Conclusion/Interpretation: The results clearly show that glucose and fatty acids interact in the production of oxidative stress in vascular smooth muscle cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research suggests that low n-3 long-chain polyunsaturated fatty acid (n-3PUFA) status is associated with higher levels of depression in clinical populations. This analysis aimed to investigate the relationship between depressed mood and n-3PUFA status in a non-clinical population. The analysis was conducted on data collected as part of a large randomized controlled trial investigating the impact of n-3PUFA supplementation on depressed mood in a community-based population. On entry into the trial, data on depressed mood were collected using the Depression, Anxiety and Stress Scales (DASS) and the Beck Depression Inventory (BDI). Plasma concentrations of various n-3PUFAs and n-6 long-chain polyunsaturated fatty acids (n-6PUFAs) were obtained from fasting venous blood samples, and various demographics were also measured. Using regression, there was no evidence of an association between either measure of depressed mood and any of the measures of n-3PUFA status or of n-6PUFA: n-3PUFA ratios. Clear associations were also not found when demographic factors were included in the analyses. These findings suggest that n-3PUFAs may not have a role in the aetiology of minor depression. This is also consistent with the results of other studies that have not demonstrated an association between depressed mood and n-3PUFA status in non-clinical populations and epidemiological studies that have not demonstrated an association between depressed mood and n-3PUFA intake in these populations. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last century much evidence has accumulated to suggest that from a public health perspective the type of fat is more important than the amount of fat. Saturated and trans-fatty acids increase and both n-6 and n-3 PUFA decrease the risk of CHD. Most of the knowledge about the effects of dietary fatty acids on CHD risk is based on observational studies and controlled dietary experiments with intermediate end points (e.g. blood lipoprotein fractions). Information from high-quality randomised controlled trials on fatty acids and CHD is lacking. The Netherlands Institute for Public Health has calculated the potential health gain that can be achieved if the fatty acid composition of the current Dutch diet is replaced by the recommended fatty acid composition. The recommendations of The Netherlands Health Council are: saturated fatty acids

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of polyunsaturated n-6 linoleic acid on monocyte-endothelial interactions were investigated with particular emphasis on the expression of platelet/endothelial cell adhesion molecule (PECAM)-1 and the role of protein kinase C (PKC) and cyclooxygenase-2 (COX-2). As a diet rich in polyunsaturated fatty acids may favour atherosclerosis in hyperglycaemia, this study was performed in both normal and high-glucose media using human aortic endothelial cells (HAEC). The HAEC were preincubated with normal (5 mM) or high (25 mM) d-glucose for 3 days before addition of fatty acids (0.2 mM) for 3 days. Linoleic acid enhanced PECAM-1 expression independently of tumor necrosis factor (TNF)-a and significantly increased TNF-a-induced monocyte adhesion to HAEC in comparison to the monounsaturated n-9 oleic acid. Chronic glucose treatment (25 mM, 6 days) did not modify the TNF-a-induced or fatty acid-induced changes in monocyte binding. The increase in monocyte binding was accompanied by a significant increase in E-selectin and vascular cell adhesion molecule (VCAM)-1 expression and could be abrogated by an interleukin (IL)-8 neutralising antibody and by the PKC and COX inhibitors. Inhibition of PKC-d reduced VCAM-1 expression regardless of experimental condition and was accompanied by a significant decrease in monocyte binding. Conditioned medium from linoleic acid-treated HAEC grown in normal glucose conditions significantly increased THP-1 chemotaxis. These results suggest that linoleic acid-induced changes in monocyte chemotaxis and subsequent binding are not solely mediated by changes in adhesion molecule expression but may be due to secreted factors such as IL-8, monocyte chemoattractant protein-1 or prostaglandins (PGs) such as PGE2, as IL-8 neutralisation and COX-2 inhibition reduced monocyte binding without changes in adhesion molecule expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE:
Patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease, largely as a result of defective production of cardioprotective nitric oxide and a concomitant rise in oxidative stress. Dietary interventions that could reverse this trend would be extremely beneficial. Here we investigated whether dietary n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation positively affected platelet nitroso-redox imbalance.
RESEARCH DESIGN AND METHODS:
We randomized hypertensive T2DM patients (T2DM HT; n = 22) and age-and-sex matched hypertensive study participants without diabetes (HT alone; n = 23) in a double-blind, crossover fashion to receive 8 weeks of n-3 PUFAs (1.8 g eicosapentaenoic acid and 1.5 g docosahexaenoic acid) or identical olive oil capsules (placebo), with an intervening 8-week washout period. Platelet nitrite and superoxide were measured and compared before and after treatment; 8-isoprostane was determined by ELISA and subcellular compartmentalization of the NAD(P)H oxidase subunit p47-phox examined by Western blotting.
RESULTS:
The n-3 PUFA supplementation reduced 8-isoprostane and superoxide levels in platelets from T2DM HT, but not HT alone, participants, without effect on nitrite production. This coincided with a significant decrease in p47-phox membrane localization and a similar reduction in superoxide to that achieved with apocynin. At baseline, a subcohort of T2DM HT and HT alone participants showed evidence of nitric oxide synthase (NOS)-derived superoxide production, indicating defective enzymatic activity. This was reversed significantly in T2DM HT participants after treatment, demonstrating improved NOS function.
CONCLUSIONS:
Our finding that n-3 PUFAs diminish platelet superoxide production in T2DM HT patients in vivo suggests a therapeutic role for these agents in reducing the vascular-derived oxidative stress associated with diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatty acid composition of the cellular lipids of Rhodococcus rhodochrous NCIMB 13064 grown on various long-chain haloalkanes has been investigated and the influence of halogen substituents, carbon chain length and the position of halogen substitution in the growth substrate explored. Of the total fatty acids present in cells grown on 1-chloro-, 1-bromo- and 1-iodohexadecane, 75, 90 and 81%, respectively, were substituted in the omega-position by the corresponding halogen but only 1% of the fatty acids present after growth on 1-fluorotetradecane were fluorinated in this position. The extent of the halofatty acid incorporation with different halogen substituents in the growth substrate appears to reflect the degree to which oxygenase attack is restricted to the non-halogenated end of the haloalkane. Studies of the fatty acid composition of cells after growth on a series of 1-chloroalkanes containing an even number of carbon atoms between C-10 and C-18 indicated chlorofatty acid incorporation from C-12 to C-18 substrates at levels ranging from 21% with C-12 to 75% with C-16. The chlorofatty acids formed by initial oxidation of the chloroalkane were chain-lengthened or chain-shortened by from two to eight carbon atoms, with accompanying desaturation in some instances. Substantial quantities of a methyl-branched C-19:0 chlorofatty acid were also present with several chloroalkane substrates, When the fatty acid composition of cells after growth on 1-bromoalkanes containing an odd number of carbon atoms between C-11 and C-17 was examined, the incorporation of bromofatty acids was observed with C-13, C-15 and C-17 substrates; a maximum of 76% was recorded for the C-15 bromoalkane. As with even chain-length chloroalkanes, both chain-lengthening and -shortening occurred predominantly via two-carbon units so that most bromoacids present possessed an odd number of carbon atoms, When 1-bromododecane or 2-bromododecane were substrates, overall incorporations of bromofatty acids into the lipid fraction were very similar, demonstrating that the position of halogen substitution in the haloalkane was not critical in determining the extent of incorporation of the haloacids into cellular lipids. The results of the study indicate a mechanism by which degradation products of chlorinated paraffins could enter the biological food chain.