927 resultados para Vital impulse


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is the second part of a two-part series examining securement options for commonly used therapeutic devices in the adult intensive care unit. Part A focused on endotracheal device securement.1 This article addresses nasogastric tube (NGT) securement options and with the aim of identifying the available range of NGT securement devices in Australia as a resource for clinicians seeking to explore options for tube stabilisation. Nasogastric feeding or gastric decompression tubes are commonly inserted via the nostril/nares. The National Pressure Ulcer Advisory Panel (NPUAP) 2011 position statement on mucosal pressure injuries, highlighted that mucosal tissues are vulnerable to pressure from devices.2 Securing of these devices sometimes leads to pressure-related injury to the internal mucosa due to difficulty visualising the mucosa and failure to reposition the nasogastric tube to relieve the pressure in a particular area.3 The nasal orifice is much smaller than the oral cavity and regular tube position changes are vital to minimise the risk of mucosal damage and ulcer development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Best Practices Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). Future Directions New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lymphoedema following cancer treatment is characterized by swelling, and adversely influences mobility, function and quality of life. There is no cure, but without treatment lymphedema may progress. Since lymphedema treatment options are costly and time consuming, understanding the influence of these, and other potential barriers, on treatment adherence is vital in reducing the public health burden of lymphedema. Complex physical therapy and compression are supported by scientific evidence and patients also perceive these treatments as effective for improving symptoms and function. Multiple treatments may be required to treat all aspects of the condition. Patients and health professionals should consider effect and costs when identifying optimal treatment strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We hypothesized that Industry based learning and teaching, especially through industry assigned student projects or training programs, is an integral part of science, technology, engineering and mathematics (STEM) education. In this paper we show that industry-based student training and experience increases students’ academic performances independent to the organizational parameters and contexts. The literature on industry-based student training focuses on employability and the industry dimension, and neglects in many ways the academic dimension. We observed that the association factors between academic attributes and contributions of industry-based student training are central and vital to the technological learning experiences. We explore international initiatives and statistics collected of student projects in two categories: Industry based learning performances and on campus performances. The data collected were correlated to five (5) universities in different industrialized countries, e.g., Australia N=545, Norway N=279, Germany N=74, France N=107 and Spain N=802 respectively. We analyzed industry-based student training along with company assigned student projects compared with in comparisons to campus performance. The data that suggests a strong correlation between industry-based student training per se and improved performance profiles or increasing motivation shows that industry-based student training increases student academic performance independent of organizational parameters and contexts. The programs we augmented were orthogonal to each other however, the trend of the students’ academic performances are identical. An isolated cohort for the reported countries that opposed our hypothesis warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We hypothesized that Industry based learning and teaching, especially through company assigned student projects or training programs, is an integral part of science, technology, engineering and mathematics (STEM) education. In this paper we show that industry-based student training and experience increases students’ academic performances independent to the organizational parameters and contexts. The literature on industry-based student training focuses on employability and the industry dimension, and neglects in many ways the academic dimension. We observed that the association factors between academic attributes and contributions of industry-based student training are central and vital to the technological learning experiences. We explore international initiatives and statistics collected of student projects in two categories: Industry based learning performances and on campus performances. The data collected were correlated to five (5) universities in different industrialized countries, e.g., Australia N=545 projects, Norway N=279, Germany N=74, France N=107 and Spain N=802. We analyzed industry-based student training along with company assigned student projects compared with in comparisons to campus performance. The data that suggests a strong correlation between industry-based student training per se and improved performance profiles or increasing motivation shows that industry-based student training increases student academic performance independent of organizational parameters and contexts. The programs we augmented were orthogonal to each other however, the trend of the students’ academic performances are identical. An isolated cohort for the reported countries that opposed our hypothesis warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metastasis, the passage of primary tumour cells throughout the body via the vascular system and their subsequent proliferation into secondary lesions in distant organs, represents a poor prognosis and therefore an understandably feared event for cancer patients. Despite considerable advances in cancer diagnosis and treatment, most deaths are the result of metastases resistant to conventional treatment [1]. Rather than being a random process, metastasis involves a series of organised steps leading to the growth of a secondary tumour. Malignant tumours stimulate the production of new vessels by the host, and this process is a prerequisite for the increase in size of a new tumour [2]. Angiogenesis, not only permits tumour expansion but also allows the entry of tumour cells into the circulation and is probably the most vital event for the metastatic process [3]. Metastasis and angiogenesis [4] have received much attention in recent years. A biological understanding of both phenomena seems to be an urgent priority towards the search for an effective prevention and treatment of tumour progression. Studies in vitro and in vivo have shown that one of the most important barriers to the passage of malignant cells is the basement membrane. The crossing of such barriers is a vital step in the formation of a metastasis [5].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differential settlement at the bridge approach between the deck and rail track on ground is often considered as a source of challenging technical and economical problem. This caused by the sudden stiffness changes between the bridge deck and the track on ground, and changes in soil stiffness of backfill and sub-grade with soil moisture content and loading history. To minimise the negative social and economic impacts due to poor performances of railway tracks at bridge transition zones, it is important, a special attention to be given at design, construction and maintenance stages. It is critically challenging to obtain an appropriate design solution for any given site condition and most of the existing conventional design approaches are unable to address the actual on-site behaviour due to their inherent assumptions of continuity and lack of clarifying of the local effects. An evaluation of existing design techniques is considered to estimate their contributions to a potential solution for bridge transition zones. This paper analyses five different approaches: the Chinese Standard, the European Standard with three different approaches, and the Australian approach. Each design approach is used to calculate the layer thicknesses, accounting critical design features such as the train speed, the axle load, the backfill subgrade condition, and the dynamic loading response. Considering correlation between track degradation and design parameters, this paper concludes that there is still a need of an optimised design approach for bridge transition zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioremediation is a potential option to treat 1, 1, 1-trichloro-2, 2 bis (4-chlorophenyl) ethane (DDT) contaminated sites. In areas where suitable microbes are not present, the use of DDT resistant microbial inoculants may be necessary. It is vital that such inoculants do not produce recalcitrant breakdown products e.g. 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE). Therefore, this work aimed to screen DDT-contaminated soil and compost materials for the presence of DDT-resistant microbes for use as potential inoculants. Four compost amended soils, contaminated with different concentrations of DDT, were used to isolate DDT-resistant microbes in media containing 150 mg I -1 DDT at three temperatures (25, 37 and 55°C). In all soils, bacteria were more sensitive to DDT than actinomycetes and fungi. Bacteria isolated at 55°C from any source were the most DDT sensitive. However DDT-resistant bacterial strains showed more promise in degrading DDT than isolated fungal strains, as 1, 1-dichloro 2, 2-bis (4-chlorophenyl) ethane (DDD) was a major bacterial transformation product, while fungi tended to produce more DDE. Further studies on selected bacterial isolates found that the most promising bacterial strain (Bacillus sp. BHD-4) could remove 51% of DDT from liquid culture after 7 days growth. Of the amount transformed, 6% was found as DDD and 3% as DDE suggesting that further transformation of DDT and its metabolites occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water management is vital for mine sites both for production and sustainability related issues. Effective water management is a complex task since the role of water on mine sites is multifaceted. Computers models are tools that represent mine site water interaction and can be used by mine sites to inform or evaluate their water management strategies. There exist several types of models that can be used to represent mine site water interactions. This paper presents three such models: an operational model, an aggregated systems model and a generic systems model. For each model the paper provides a description and example followed by an analysis of its advantages and disadvantages. The paper hypotheses that since no model is optimal for all situations, each model should be applied in situations where it is most appropriate based upon the scale of water interactions being investigated, either unit (operation), inter-site (aggregated systems) or intra-site (generic systems).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim Our aim was to clarify the lineage-level relationships for Melomys cervinipes and its close relatives and investigate whether the patterns of divergence observed for these wet-forest-restricted mammals may be associated with recognized biogeographical barriers. Location Mesic closed forest along the east coast of Australia, from north Queensland to mid-eastern New South Wales. Methods To enable rigorous phylogenetic reconstruction, divergence-date estimation and phylogeographical inference, we analysed DNA sequence and microsatellite data from 307 specimens across the complete distribution of M. cervinipes (45 localities). Results Three divergent genetic lineages were found within M. cervinipes, corresponding to geographically delineated northern, central and southern clades. Additionally, a fourth lineage, comprising M. rubicola and M. capensis, was identified and was most closely related to the northern M. cervinipes lineage. Secondary contact of the northern and central lineages was identified at one locality to the north of the Burdekin Gap. Main conclusions Contemporary processes of repeated habitat fragmentation and contraction, local extinction events and subsequent re-expansion across both small and large areas, coupled with the historical influence of the Brisbane Valley Barrier, the St Lawrence Gap and the Burdekin Gap, have contributed to the present phylogeographical structure within M. cervinipes. Our study highlights the need to sample close to the periphery of putative biogeographical barriers or risk missing vital phylogeographical information that may significantly alter the interpretation of biogeographical hypotheses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge Management (KM) is vital factor to successfully undertake projects. The temporary nature of projects necessitates employing useful KM practices to reduce any issues such as knowledge leakiness and rework. The Project Management Office (PMO) is a unit within organisations to facilitate and oversee organisational projects. Project Management Maturity Models (PMMM) show the development of PMOs from immature to mature levels. The existing PMMMs have focused on discussing Project Management (PM) practices, however, the management of project knowledge is yet to be addressed, at various levels of maturity. A research project was undertaken to investigate the mentioned gap for addressing KM practices at the existing PMMMs. Due to the exploratory and inductive nature of this research, qualitative methods using case studies were chosen as the research methodology to investigate the problem in the real world. In total, three cases selected from different industries: research; mining and government organisations, to provide broad categories for research and research questions were examined using the developed framework. This paper presents the findings from the investigation of the research organisation with the lowest level of maturity. From KM process point of view, knowledge creation and capturing are the most important processes, while knowledge transferring and reusing received less attention. In addition, it was revealed that provision of “knowledge about client” and “project management knowledge” are the most important types of knowledge that are required at this level of maturity. The results also revealed that PMOs with higher maturity level have better knowledge management, however, some improvement is needed. In addition, the importance of KM processes varies at different levels of maturity. In conclusion, the outcomes of this paper could provide powerful guidance to PMOs at lowest level of maturity from KM point of view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The osteoimmunomodulatory property of bone biomaterials is a vital property determining the in vivo fate of the implants. Endowing bone biomaterials with favorable osteoimmunomodulatory properties is of great importance in triggering desired immune response and thus supports the bone healing process. Magnesium (Mg) has been recognized as a revolutionary metal for applications in orthopedics due to it being biodegradable, biocompatible, and having osteoconductive properties. However, Mg's high rate of degradation leads to an excessive inflammatory response and this has restricted its application in bone tissue engineering. In this study, β-tricalcium phosphate (β-TCP) was used to coat Mg scaffolds in an effort to modulate the detrimental osteoimmunomodulatory properties of Mg scaffolds, due to the reported favorable osteoimmunomodulatory properties of β-TCP. It was noted that macrophages switched to the M2 extreme phenotype in response to the Mg-β-TCP scaffolds, which could be due to the inhibition of the toll like receptor (TLR) signaling pathway. VEGF and BMP2 were significantly upregulated in the macrophages exposed to Mg-β-TCP scaffolds, indicating pro-osteogenic properties of macrophages in β-TCP modified Mg scaffolds. This was further demonstrated by the macrophage-mediated osteogenic differentiation of bone marrow stromal cells (BMSCs). When BMSCs were stimulated by conditioned medium from macrophages cultured on Mg-β-TCP scaffolds, osteogenic differentiation of BMSCs was significantly enhanced; whereas osteoclastogenesis was inhibited, as indicated by the downregualtion of MCSF, TRAP and inhibition of the RANKL/RANK system. These findings suggest that β-TCP coating of Mg scaffolds can modulate the scaffold's osteoimmunomodulatory properties, shift the immune microenvironment towards one that favors osteogenesis over osteoclastogenesis. Endowing bone biomaterials with favorable osteoimmunomodulatory properties can be a highly valuable strategy for the development or modification of advanced bone biomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article addresses the questions of whether there are motivational deficits in children with intellectual disabilities, whether those with Down syndrome are more likely to display motivational deficits, and how motivation might be supported. The available literature that has examined motivation in children with intellectual disabilities was considered and integrated to address the questions outlined above. There is little published research on this vital topic. Reports on motivational problems differ depending upon the method of data collection. Observational studies using structured tasks generally reveal no differences between children with intellectual disabilities and typically developing children matched for mental age. When reports of parents or teachers are used, children with intellectual disabilities appear to have deficits in motivation. No evidence was found for a particular deficit in children with Down syndrome. The results of this review challenge the perception that children with intellectual disabilities will generally have motivational problems, although it is clear that motivation is a complex construct, not easily examined in those with intellectual disabilities. Strategies for addressing problems and for maintaining motivation, based on theory and evidence, are provided. These strategies are applicable across a range of settings including the home, school, and more adult-oriented services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we analyse the role of some of the building blocks of SHA-256. We show that the disturbance-correction strategy is applicable to the SHA-256 architecture and we prove that functions Σ, σ are vital for the security of SHA-256 by showing that for a variant without them it is possible to find collisions with complexity 2^64 hash operations. As a step towards an analysis of the full function, we present the results of our experiments on Hamming weights of expanded messages for different variants of the message expansion and show that there exist low-weight expanded messages for XOR-linearised variants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.