990 resultados para Vision communities
Resumo:
The Vision Flashes are informal working papers intended primarily to stimulate internal interaction among participants in the A.I. Laboratory's Vision and Robotics group. Many of them report highly tentative conclusions or incomplete work. Others deal with highly detailed accounts of local equipment and programs that lack general interest. Still others are of great importance, but lack the polish and elaborate attention to proper referencing that characterizes the more formal literature. Nevertheless, the Vision Flashes collectively represent the only documentation of an important fraction of the work done in machine vision and robotics. The purpose of this report is to make the findings more readily available, but since they are not revised as presented here, readers should keep in mind the original purpose of the papers!
Resumo:
Cooper, J., Spink, S., Thomas, R. & Urquhart, C. (2005). Evaluation of the Specialist Libraries/Communities of Practice. Report for National Library for Health. Aberystwyth: Department of Information Studies, University of Wales Aberystwyth. Sponsorship: National Library for Health (NLH)
Resumo:
Yeoman, A., Urquhart, C. & Sharp, S. (2003). Moving Communities of Practice forward: the challenge for the National electronic Library for Health and its Virtual Branch Libraries. Health Informatics Journal, 9(4), 241-252. Previously appeared as a conference paper for the iSHIMR2003 conference (Proceedings of the Eighth International Symposium on Health Information Management Research, June 1-3, 2003, Boras, Sweden) Sponsorship: NHS Information Authority/National electronic Library for Health
Resumo:
Urquhart, C., Yeoman, A., Sharp, S. (2003). Developing communities of practice in the NeLH (National electronic Library for Health). In Proceedings of the UKAIS (UK Academy for Information Systems) annual conference, University of Warwick, April 2003. Sponsorship: NHS Information Authority/National electronic Library for Health
Resumo:
R. Zwiggelaar, Q. Yang, E. Garcia-Pardo and C.R. Bull, 'Using spectral information and machine vision for bruise detection on peaches and apricots', Journal of Agricultural Engineering Research 63 (4), 323-332 1996)
Resumo:
A Research Report from the "Organizing Religious Work Project," Hartford Institute for Religion Research Hartford Seminary
Resumo:
Missiological calls for self-theologizing among faith communities present the field of practical theology with a challenge to develop methodological approaches that address the complexities of cross-cultural, practical theological research. Although a variety of approaches can be considered critical correlative practical theology, existing methods are often built on assumptions that limit their use in subaltern contexts. This study seeks to address these concerns by analyzing existing theological methodologies with sustained attention to a community of Deaf Zimbabwean women struggling to develop their own agency in relation to child rearing practices. This dilemma serves as an entry point to an examination of the limitations of existing methodologies and a constructive, interdisciplinary theological exploration. The use of theological modeling methodology employs my experience of learning to cook sadza, a staple dish of Zimbabwe, as a guide for analyzing and reorienting practical theological methodology. The study explores a variety of theological approaches from practical theology, mission oriented theologians, theology among Deaf communities, and African women’s theology in relationship to the challenges presented by subaltern communities such as Deaf Zimbabwean women. Analysis reveals that although there is much to commend in these existing methodologies, questions about who does the critical correlation, whose interests are guiding the study, and consideration for the cross-cultural and power dynamics between researchers and faith communities remain problematic for developing self-theologizing agency. Rather than frame a comprehensive methodology, this study proposes three attitudes and guideposts to reorient practical theological researchers who wish to engender self-theologizing agency in subaltern communities. The creativity of enacted theology, the humility of using checks and balances in research methods, and the grace of finding strategies to build bridges of commonality and community offer ways to reorient practical theological methodologies toward the development of self-theologizing agency among subaltern people. This study concludes with discussion of how these guideposts can not only benefit particular work with a community of Deaf Zimbabwean women, but also provide research and theological reflection in other subaltern contexts.
Resumo:
A fundamental task of vision systems is to infer the state of the world given some form of visual observations. From a computational perspective, this often involves facing an ill-posed problem; e.g., information is lost via projection of the 3D world into a 2D image. Solution of an ill-posed problem requires additional information, usually provided as a model of the underlying process. It is important that the model be both computationally feasible as well as theoretically well-founded. In this thesis, a probabilistic, nonlinear supervised computational learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human body or human hands, given images obtained via one or more uncalibrated cameras. The SMA consists of several specialized forward mapping functions that are estimated automatically from training data, and a possibly known feedback function. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). A probabilistic model for the architecture is first formalized. Solutions to key algorithmic problems are then derived: simultaneous learning of the specialized domains along with the mapping functions, as well as performing inference given inputs and a feedback function. The SMA employs a variant of the Expectation-Maximization algorithm and approximate inference. The approach allows the use of alternative conditional independence assumptions for learning and inference, which are derived from a forward model and a feedback model. Experimental validation of the proposed approach is conducted in the task of estimating articulated body pose from image silhouettes. Accuracy and stability of the SMA framework is tested using artificial data sets, as well as synthetic and real video sequences of human bodies and hands.
Resumo:
A vision based technique for non-rigid control is presented that can be used for animation and video game applications. The user grasps a soft, squishable object in front of a camera that can be moved and deformed in order to specify motion. Active Blobs, a non-rigid tracking technique is used to recover the position, rotation and non-rigid deformations of the object. The resulting transformations can be applied to a texture mapped mesh, thus allowing the user to control it interactively. Our use of texture mapping hardware allows us to make the system responsive enough for interactive animation and video game character control.
Resumo:
A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.
Resumo:
Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.
Resumo:
Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016); National Science Foundation (SBE-035437, DEG-0221680); Office of Naval Research (N00014-01-1-0624)
Resumo:
Under natural viewing conditions, a single depthful percept of the world is consciously seen. When dissimilar images are presented to corresponding regions of the two eyes, binocular rivalyr may occur, during which the brain consciously perceives alternating percepts through time. How do the same brain mechanisms that generate a single depthful percept of the world also cause perceptual bistability, notably binocular rivalry? What properties of brain representations correspond to consciously seen percepts? A laminar cortical model of how cortical areas V1, V2, and V4 generate depthful percepts is developed to explain and quantitatively simulate binocualr rivalry data. The model proposes how mechanisms of cortical developement, perceptual grouping, and figure-ground perception lead to signle and rivalrous percepts. Quantitative model simulations include influences of contrast changes that are synchronized with switches in the dominant eye percept, gamma distribution of dominant phase durations, piecemeal percepts, and coexistence of eye-based and stimulus-based rivalry. The model also quantitatively explains data about multiple brain regions involved in rivalry, effects of object attention on switching between superimposed transparent surfaces, and monocular rivalry. These data explanations are linked to brain mechanisms that assure non-rivalrous conscious percepts. To our knowledge, no existing model can explain all of these phenomena.
Resumo:
CONFIGR (CONtour FIgure GRound) is a computational model based on principles of biological vision that completes sparse and noisy image figures. Within an integrated vision/recognition system, CONFIGR posits an initial recognition stage which identifies figure pixels from spatially local input information. The resulting, and typically incomplete, figure is fed back to the “early vision” stage for long-range completion via filling-in. The reconstructed image is then re-presented to the recognition system for global functions such as object recognition. In the CONFIGR algorithm, the smallest independent image unit is the visible pixel, whose size defines a computational spatial scale. Once pixel size is fixed, the entire algorithm is fully determined, with no additional parameter choices. Multi-scale simulations illustrate the vision/recognition system. Open-source CONFIGR code is available online, but all examples can be derived analytically, and the design principles applied at each step are transparent. The model balances filling-in as figure against complementary filling-in as ground, which blocks spurious figure completions. Lobe computations occur on a subpixel spatial scale. Originally designed to fill-in missing contours in an incomplete image such as a dashed line, the same CONFIGR system connects and segments sparse dots, and unifies occluded objects from pieces locally identified as figure in the initial recognition stage. The model self-scales its completion distances, filling-in across gaps of any length, where unimpeded, while limiting connections among dense image-figure pixel groups that already have intrinsic form. Long-range image completion promises to play an important role in adaptive processors that reconstruct images from highly compressed video and still camera images.