982 resultados para Viscoelastic Jets
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
This work describes a new technique for the selective removal of steel using a conventional CO2 laser beam and a novel arrangement of inert and reactive gas jets to produce the gas equivalent of a rotary cutter.
Resumo:
Skin biothermomechanics is highly interdisciplinary, involving bioheat transfer, burn damage, biomechanics, and physiology. Characterization of the thermomechanical behavior of skin tissue is of great importance and can contribute to a variety of medical applications. However, few quantitative studies have been conducted on the thermally-dependent mechanical properties of skin tissue. The aim of the present study is to experimentally examine the thermally-induced change in the relaxation behavior of skin tissue in both hyperthermal and hypothermic ranges. The results show that temperature has great influence on the stress-relaxation behavior of skin tissue under both hyperthermal and hypothermic temperatures; the quantitative relationship that has been found between temperature and the viscoelastic parameter (the elastic fraction or fractional energy dissipation) was temperature dependent, with greatest dissipation at high temperature levels.
Resumo:
In this paper, we report on the flexoelastic and viscoelastic ratios for a number of bimesogens compounds with the same generic structure. Values are obtained indirectly by measuring the flexoelectro-optic response in the chiral nematic phase. By varying the molecular structure we alter the bend angle, transverse dipole moment, and length of the molecule. First, to examine the influence of the bend angle we use a homologous series whereby the only alteration in the molecular structure is the number of methylene units in the aliphatic spacer, n . Results show that the flexoelastic ratio, e/K , and the effective flexoelectric coefficient, e , both exhibit an odd-even effect with values for n=odd being greater than that for n=even . This is understood in terms of an increase in the bend angle of the molecule and an increase in the transverse dipole moment. Second, in order to investigate the impact of the dipole moment, we have altered the mesogenic units so as to vary the longitudinal dipole moment and used different linkages in the aliphatic spacer in an attempt to alter the transverse dipole moment. Qualitatively, the results demonstrate that the odd-spaced bimesogen with larger transverse dipole moments exhibit larger flexoelastic ratios.
Resumo:
Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.
Resumo:
The interaction of wakes shed by a moving bladerow with a downstream bladerow causes unsteady flow. The meaning of the freestream stagnation pressure and stagnation enthalpy in these circumstances has been examined using simple analyses, measurements and CFD. The unsteady flow in question arises from the behaviour of the wakes as so-called negative-jets. The interactions of the negative-jets with the downstream blades lead to fluctuations in static pressure which in turn generate fluctuations in the stagnation pressure and stagnation enthalpy. It is shown that the fluctuations of the stagnation quantities created by unsteady effects within the bladerow are far greater than those within the incoming wake. The time-mean exit profiles of the stagnation pressure and stagnation enthalpy are affected by these large fluctuations. This phenomenon of energy separation is much more significant than the distortion of the time-mean exit profiles that is caused directly by the cross-passage transport associated with the negative-jet, as described by Kerrebrock and Mikolajczak. Finally, it is shown that if only time-averaged values of loss are required across a bladerow, it is nevertheless sufficient to determine the time-mean exit stagnation pressure.
Resumo:
Bone is an anisotropic material, and its mechanical properties are determined by its microstructure as well as its composition. Mechanical properties of bone are a consequence of the proportions of, and the interactions between, mineral, collagen and water. Water plays an important role in maintaining the mechanical integrity of the composite, but the manner in which water interacts within the ultrastructure is unclear. Dentine being an isotropic two-dimensional structure presents a homogenous composite to examine the dehydration effects. Nanoindentation methods for determining the viscoelastic properties have recently been developed and are a subject of great interest. Here, one method based on elastic-viscoelastic correspondence for 'ramp and hold' creep testing (Oyen, J. Mater. Res., 2005) has been used to analyze viscoelastic behavior of polymeric and biological materials. The method of 'ramp and hold' allows the shear modulus at time zero to be determined from fitting of the displacement during the maximum load hold. Changes in the viscoelastic properties of bone and dentine were examined as the material was systematically dehydrated in a series of water:solvent mixes. Samples of equine dentine were sectioned and cryo-polished. Shear modulus was obtained by nanoindentation using spherical indenters with a maximum load hold of 120s. Samples were tested in different solvent concentrations sequentially, 70% ethanol to 50% ethanol, 70 % ethanol to 100% ethanol, 70% ethanol to 70% methanol to 100% methanol, and 70% ethanol to 100% acetone, after storage in each condition for 24h. By selectively removing and then replacing water from the composite, insights in to the ultrastructure of the tissue can be gained from the corresponding changes in the experimentally determined moduli, as well as an understanding of the complete reversibility of the dehydration process. © 2006 Materials Research Society.
Resumo:
Indentation techniques are employed for the measurement of mechanical properties of a wide range of materials. In particular, techniques focused at small length-scales, such as nanoindentation and AFM indentation, allow for local characterization of material properties in heterogeneous materials including natural tissues and biomimetic materials. Typical elastic analysis for spherical indentation is applicable in the absence of time-dependent deformation, but is inappropriate for materials with time-dependent responses. Recent analyses for the viscoelastic indentation problem, based on elastic-viscoelastic correspondence, have begun to address the issue of time-dependent deformation during an indentation test. The viscoelastic analysis has been shown to fit experimental indentation data well, and has been demonstrated as useful for characterization of viscoelasticity in polymeric materials and in hydrated mineralized tissues. However, a viscoelastic analysis is not necessarily sufficient for multi-phase materials with fluid flow. In the current work, a poroelastic analysis-based on fluid motion through a porous elastic network-is used to examine spherical indentation creep responses of hydrated biological materials. Both analytical and finite element approaches are considered for the poroelastic Hertzian indentation problem. Modeling results are compared with experimental data from nanoindentation of hydrated bone immersed in water and polar solvents (ethanol, methanol, acetone). Baseline (water-immersed) bone responses are characterized using the poroelastic model and numerical results are compared with altered hydration states due to polar solvents. © 2007 Materials Research Society.
Resumo:
In the current study, the effects of polar solvents on tissue volume and mechanical properties are considered. Area shrinkage measurements are conducted for mineralized bone tissue samples soaked in polar solvents. Area shrinkage is used to calculate approximate linear and volume shrinkage. Results are compared with viscoelastic mechanical parameters for bone in the same solvents (as measured previously) and with both shrinkage measurements and mechanical data for nonmineralized tissues, as taken from the existing literature. As expected, the shrinkage of mineralized tissues is minimal when compared with shrinkage of nonmineralized tissues immersed in the same polar solvents. The mechanical changes in bone are also substantially less than in nonmineralized tissues. The largest stiffness values are found in shrunken bone samples (immersed in acetone and ethanol). The mineral phase in bone thus resists tissue shrinkage that would otherwise occur in the pure soft tissue phase. © 2007 Materials Research Society.
Resumo:
The fluid dynamic operation of a valveless pulse combustor has been studied experimentally and numerically. Through phase-locked chemiluminescence and pressure measurements it is shown that mechanical energy is created periodically in the flame surface, with an efficiency of 1.6%. This mechanical energy leaves the pulse combustor through unsteady jets at the aerovalve inlet and the tailpipe exit stations. Two thermodynamically distinct flows are identified: a flow that is transported from inlet to exit and participates in combustion along the way, and a flow that is ingested and then ejected from the combustor without undergoing combustion. It is the latter of these two flows which has the greatest quantity of net work done on it. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
mark Unsteady ejectors can be driven by a wide range of driver jets. These vary from pulse detonation engines, which typically have a long gap between each slug of fluid exiting the detonation tube (mark-space ratios in the range 0.1-0.2) to the exit of a pulsejet where the mean mass flow rate leads to a much shorter gap between slugs (mark-space ratios in the range 2-3). The aim of this paper is to investigate the effect of mark-space ratio on the thrust augmentation of an unsteady ejector. Experimental testing was undertaken using a driver jet with a sinusoidal exit velocity profile. The mean value, amplitude and frequency of the velocity profile could be changed allowing the length to diameter ratio of the fluid slugs L/D and the mark-space ratio (the ratio of slug length to the spacing between slugs) L/S to be varied. The setup allowed L/S of the jet to vary from 0.8 to 2.3, while the L/D ratio of the slugs could take any values between 3.5 and 7.5. This paper shows that as the mark-space ratio of the driver jet is increased the thrust augmentation drops. Across the range of mark-space ratios tested, there is shown to be a drop in thrust augmentation of 0.1. The physical cause of this reduction in thrust augmentation is shown to be a decrease in the percentage time over which the ejector entrains ambient fluid. This is the direct result ofthe space between consecutive slugs in the driver jet decreasing. The one dimensional model reported in Heffer et al. [1] is extended to include the effect of varying L/S and is shown to accurately capture the experimentally measured behavior ofthe ejector. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
High speed photographic images of jets formed from dilute solutions of polystyrene in diethyl phthalate ejected from a piezoelectric drop-on-demand inkjet head have been analyzed in order to study the formation and distribution of drops as the ligament collapses. Particular attention has been paid to satellite drops, and their relative separation and sizes. The effect of polymer concentration was investigated. The distribution of nearest-neighbour centre spacing between the drops formed from the ligament is better described by a 2-parameter modified gamma distribution than by a Gaussian distribution. There are (at least) two different populations of satellite size relative to the main drop size formed at normal jetting velocities, with ratios of about three between the diameters of the main drop and the successive satellite sizes. The distribution of the differences in drop size between neighbouring drops is close to Gaussian, with a small non-zero mean for low polymer concentrations, which is associated with the conical shape of the ligament prior to its collapse and the formation of satellites. Higher polymer concentrations result in slower jets for the same driving impulse, and also a tendency to form ligaments with a near-constant width. Under these conditions the mean of the distribution of differences in nearest-neighbour drop size was zero.
Resumo:
This study investigated the neuromuscular mechanisms underlying the initial stage of adaptation to novel dynamics. A destabilizing velocity-dependent force field (VF) was introduced for sets of three consecutive trials. Between sets a random number of 4-8 null field trials were interposed, where the VF was inactivated. This prevented subjects from learning the novel dynamics, making it possible to repeatedly recreate the initial adaptive response. We were able to investigate detailed changes in neural control between the first, second and third VF trials. We identified two feedforward control mechanisms, which were initiated on the second VF trial and resulted in a 50% reduction in the hand path error. Responses to disturbances encountered on the first VF trial were feedback in nature, i.e. reflexes and voluntary correction of errors. However, on the second VF trial, muscle activation patterns were modified in anticipation of the effects of the force field. Feedforward cocontraction of all muscles was used to increase the viscoelastic impedance of the arm. While stiffening the arm, subjects also exerted a lateral force to counteract the perturbing effect of the force field. These anticipatory actions indicate that the central nervous system responds rapidly to counteract hitherto unfamiliar disturbances by a combination of increased viscoelastic impedance and formation of a crude internal dynamics model.
Resumo:
The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experimentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid, instead, the parallel shear flow regime exhibited at low amplitudes [Torralba, Phys. Rev. E 72, 016308 (2005)] becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric structures develop. Given that inertial effects remain negligible even at the hardest drivings (Re < 10(-1)), it is the complex rheology of the fluid that is responsible for the instabilities observed. The system studied represents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in purely parallel shear flow.
Resumo:
To calculate the noise emanating from a turbulent flow using an acoustic analogy knowledge concerning the unsteady characteristics of the turbulence is required. Specifically, the form of the turbulent correlation tensor together with various time and length-scales are needed. However, if a Reynolds Averaged Navier-Stores calculation is used as the starting point then one can only obtain steady characteristics of the flow and it is necessary to model the unsteady behavior in some way. While there has been considerable attention given to the correct way to model the form of the correlation tensor less attention has been given to the underlying physics that dictate the proper choice of time-scale. In this paper the authors recognize that there are several time dependent processes occurring within a turbulent flow and propose a new way of obtaining the time-scale. Isothermal single-stream flow jets with Mach numbers 0.75 and 0.90 have been chosen for the present study. The Mani-Gliebe-Balsa-Khavaran method has been used for prediction of noise at different angles, and there is good agreement between the noise predictions and observations. Furthermore, the new time-scale has an inherent frequency dependency that arises naturally from the underlying physics, thus avoiding supplementary mathematical enhancements needed in previous modeling.