1000 resultados para Viscoelastic Flow
Resumo:
Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.
Resumo:
Fluid flow behaviour in porous media is a conundrum. Therefore, this research is focused on filtration-volumetric characterisation of fractured-carbonate sediments, coupled with their proper simulation. For this reason, at laboratory rock properties such as pore volume, permeability and porosity are measured, later phase permeabilities and oil recovery in function of flow rate are assessed. Furthermore, the rheological properties of three oils are measured and analysed. Finally based on rock and fluid properties, a model using COMSOL Multiphysics is built in order to compare the experimental and simulated results. The rock analyses show linear relation between flow rate and differential pressure, from which phase permeabilities and pressure gradient are determined, eventually the oil recovery under low and high flow rate is established. In addition, the oils reveal thixotropic properties as well as non-Newtonian behaviour described by Bingham model, consequently Carreau viscosity model for the used oil is given. Given these points, the model for oil and water is built in COMSOL Multiphysics, whereupon successfully the reciprocity between experimental and simulated results is analysed and compared. Finally, a two-phase displacement model is elaborated.
Resumo:
In this Master’s Thesis work the rheological properties of different polysaccharide gels have been studied. The results of this study are used as a starting point for further investigations of potential applications. In order to understand rheological behavior of studied materials, the commercial hydrocolloids such as sodium carboxymethyl cellulose, xanthan gum and guar gum were used as reference and comparison material for rheological studies. As a part the rheological research the development and implementation of proper measurement methods for studied materials were carried out. In the literature review, short introductions of studied materials and application areas of rheological modifiers are summarized. In addition, basic rheological concepts and key fundamentals are explained. In the experimental part the focus was on the rheological characterization of aqueous suspensions of studied materials. Especially, gel strength and solution stability were investigated. The rheological measurements included both rotational and oscillatory measurements in different conditions, where several chemical and physical properties were measured with Anton Paar MCR302 dynamic rotational rheometer. Studied polysaccharide gels can be clearly defined to be shear thinning and thixotropic materials. They have strong gel forming properties even at low concentrations, which explains the superior thickening behavior for some of the samples. Along with rheological characterization of selected materials the factors behind different phenomena were investigated. To reveal value and potential use of polysaccharide gels the influence of various factors such as concentration, temperature and ionic strength were determined. The measurements showed a clear difference between studied materials under investigated external parameters.
Resumo:
Studying testis is complex, because the tissue has a very heterogeneous cell composition and its structure changes dynamically during development. In reproductive field, the cell composition is traditionally studied by morphometric methods such as immunohistochemistry and immunofluorescence. These techniques provide accurate quantitative information about cell composition, cell-cell association and localization of the cells of interest. However, the sample preparation, processing, staining and data analysis are laborious and may take several working days. Flow cytometry protocols coupled with DNA stains have played an important role in providing quantitative information of testicular cells populations ex vivo and in vitro studies. Nevertheless, the addition of specific cells markers such as intracellular antibodies would allow the more specific identification of cells of crucial interest during spermatogenesis. For this study, adult rat Sprague-Dawley rats were used for optimization of the flow cytometry protocol. Specific steps within the protocol were optimized to obtain a singlecell suspension representative of the cell composition of the starting material. Fixation and permeabilization procedure were optimized to be compatible with DNA stains and fluorescent intracellular antibodies. Optimization was achieved by quantitative analysis of specific parameters such as recovery of meiotic cells, amount of debris and comparison of the proportions of the various cell populations with already published data. As a result, a new and fast flow cytometry method coupled with DNA stain and intracellular antigen detection was developed. This new technique is suitable for analysis of population behavior and specific cells during postnatal testis development and spermatogenesis in rodents. This rapid protocol recapitulated the known vimentin and γH2AX protein expression patterns during rodent testis ontogenesis. Moreover, the assay was applicable for phenotype characterization of SCRbKO and E2F1KO mouse models.
Resumo:
A flow injection hydride generation direct current plasma atomic emission spectrometric (FI-HG-DCP-AES) method was developed for the determination of lead at ng.ml-l level. Potassium ferricyanide (K3Fe(CN)6) was used along with sodium tetrahydroborate(III) (NaBH4) to produce plumbane (PbH4) in an acid medium. The design of a gas-liquid separator (hydride generator) was tested and the parameters of the flow injection system were optimized to achieve a good detection limit and sample throughput. The technique developed gave a detection limit of 0.7 ng.ml-l(3ob). The precision at 20 ng.ml"* level was 1.6 % RSD with 1 1 measurements (n=l 1). Volume of sample loop was 500 |J.l. A sample throughput of 120 h"^ was achieved. The transition elements, Fe(II), FeOH), Cd(n), Co(II), Mn(n), Ni(II) and Zn(n) do not interfere in this method but 1 mg,l'l Cu(II) will suppress 50 % of the signal from a sample containing 20 ng.ml'l Pb. This method was successfully applied to determine lead in a calcium carbonate (CaC03) matrix of banded coral skeletons from Si-Chang Island in Thailand.
Resumo:
Although medium sized, muscular vessels normally respond to sympathetic stimulation by reducing compliance, it is unclear whether the large brachial artery is similarly affected by sympathetic stimulation induced via lower-body negative pressure (LBNP). Similarly, the impact of flow-mediated dilation (FMD) on brachial artery compliance and distensibility remains unresolved, hi addition, before such measures can be used as prognostic tools, it is important to investigate the reliability and repeatability of both techniques. Using a randomized order design, the effects of LBNP and FMD on the mechanical properties of the brachial artery were examined in nine healthy male subjects (mean age 24y). Non-invasive Doppler ultrasound and a Finometer were used to measure simultaneously the variation in systolic and diastolic diameter, and brachial blood pressure, respectively. These values were used to calculate compliance and distensibility values at baseline, and during both LBNP and FMD. The within-day and between-day repeatability of arterial diameter, compliance, distensibility, and FMD measures were assessed using the error coefficient and intra-class correlation coefficient (ICC). While heart rate (P<0.01) and peripheral resistance increased during LBNP (P<0.05), forearm blood flow and pulse pressure decreased (P<0.01). hi terms of mechanical properties, vessel diameters decreased (P<0.05), but both compliance and distensibility were not changed. On the other hand, FMD resulted in a significant increase in diameter (P<0.001), with no change in compliance or distensibility. hi summary, LBNP and FMD do not appear to alter brachial artery compliance or distensibility in young, healthy males. Whereas measures ofFMD were not found to be repeatable between days, the ICC indicated that compliance and distensibility were repeatable only within-day.
Resumo:
The effect that plants {Typha latifolia) as well as root-bed medium physical and chemical characteristics have on the treatment of primary treated domestic wastewater within a vertical flow constructed wetland system was investigated. Five sets of cells, with two cells in each set, were used. Each cell was made of concrete and measured 1 .0 m X 1 .0 m and was 1.3 m deep. Four different root-bed media were tested : Queenston Shale, Fonthill Sand, Niagara Shale and a Michigan Sand. Four of the sets contained plants and a single type of root-bed medium. The influence of plants was tested by operating a Queenston Shale set without plants. Due to budget constraints no replicates were constructed. All of the sets were operated independently and identically for twenty-eight months. Twelve months of data are presented here, collected after 16 months of continuous operation. Root-bed medium type did not influence BOD5 removal. All of the sets consistently met Ontario Ministry of Environment (MOE) requirements (<25 mg/L) for BOD5 throughout the year. The 12 month average BOD5 concentration from all sets with plants was below 2.36 mg/L. All of the sets were within MOE discharge requirements (< 25 mg/L) for suspended solids with set effluent concentrations ranging from 1.53 to 14.80 mg/L. The Queenston Shale and Fonthill Sand media removed the most suspended solids while the Niagara Shale set produced suspended solids. The set containing Fonthill Sand was the only series to meet MOE discharge requirements (< Img/L) for total phosphorus year-round with a twelve month mean effluent concentration of 0.23 mg/L. Year-round all of the root-bed media were well below MOE discharge requirements (< 20mg/L in winter and < 10 mg/L in sumnner) for ammonium. The Queenston Shale and Fonthill Sand sets removed the most total nitrogen. Plants had no effect on total nitrogen removal, but did influence how nitrogen was cycled within the system. Plants increased the removal of suspended solids by 14%, BOD5 by 10% and total phosphorus by 22%. Plants also increased the amount of dissolved oxygen that entered the system. During the plant growing season removal of total phosphorus was better in all sets with plants regardless of media type. The sets containing Queenston Shale and Fonthill Sand media achieved the best results and plants in the Queenston Shale set increased treatment efficiency for every parameter except nitrogen. Vertical flow wetland sewage treatment systems can be designed and built to consistently meet MOE discharge requirements year-round for BOD5, suspended solids, total phosphorus and ammonium. This system Is generally superior to the free water systems and sub-surface horizontal flow systems in cold climate situations.
Resumo:
Flow injection analysis (FIA) was applied to the determination of both chloride ion and mercury in water. Conventional FIA was employed for the chloride study. Investigations of the Fe3 +/Hg(SCN)2/CI-,450 nm spectrophotometric system for chloride determination led to the discovery of an absorbance in the 250-260 nm region when Hg(SCN)2 and CI- are combined in solution, in the absence of iron(III). Employing an in-house FIA system, absorbance observed at 254 nm exhibited a linear relation from essentially 0 - 2000 Jlg ml- 1 injected chloride. This linear range spanning three orders of magnitude is superior to the Fe3+/Hg(SCN)2/CI- system currently employed by laboratories worldwide. The detection limit obtainable with the proposed method was determin~d to be 0.16 Jlg ml- 1 and the relative standard deviation was determined to be 3.5 % over the concentration range of 0-200 Jig ml- 1. Other halogen ions were found to interfere with chloride determination at 254 nm whereas cations did not interfere. This system was successfully applied to the determination of chloride ion in laboratory water. Sequential injection (SI)-FIA was employed for mercury determination in water with the PSA Galahad mercury amalgamation, and Merlin mercury fluorescence detection systems. Initial mercury in air determinations involved injections of mercury saturated air directly into the Galahad whereas mercury in water determinations involved solution delivery via peristaltic pump to a gas/liquid separator, after reduction by stannous chloride. A series of changes were made to the internal hardware and valving systems of the Galahad mercury preconcentrator. Sequential injection solution delivery replaced the continuous peristaltic pump system and computer control was implemented to control and integrate all aspects of solution delivery, sample preconcentration and signal processing. Detection limits currently obtainable with this system are 0.1 ng ml-1 HgO.
Resumo:
Mathematical predictions of flow conditions along a steep gradient rock bedded stream are examined. Stream gage discharge data and Manning's Equation are used to calculate alternative velocities, and subsequently Froude Numbers, assuming varying values of velocity coefficient, full depth or depth adjusted for vertical flow separation. Comparison of the results with photos show that Froude Numbers calculated from velocities derived from Manning's Equation, assuming a velocity coefficient of 1.30 and full depth, most accurately predict flow conditions, when supercritical flow is defined as Froude Number values above 0.84. Calculated Froude Number values between 0.8 and 1.1 correlate well with observed transitional flow, defined as the first appearance of small diagonal waves. Transitions from subcritical through transitional to clearly supercritical flow are predictable. Froude Number contour maps reveal a sinuous rise and fall of values reminiscent of pool riffle energy distribution.
Resumo:
For inviscid fluid flow in any n-dimensional Riemannian manifold, new conserved vorticity integrals generalizing helicity, enstrophy, and entropy circulation are derived for lower-dimensional surfaces that move along fluid streamlines. Conditions are determined for which the integrals yield constants of motion for the fluid. In the case when an inviscid fluid is isentropic, these new constants of motion generalize Kelvin’s circulation theorem from closed loops to closed surfaces of any dimension.
Resumo:
The interaction between local and reflexive control of skin blood flow (SkBF) is unclear. This thesis isolated the roles of rectal (Tre) and local (Tloc) temperature on forearm SkBF regulation at normal and elevated body temperatures, and to investigate the interaction between local and reflexive SkBF control. While either normothermic (Tre ~37.0°C) or hyperthermic (∆Tre +1.1°C), SkBF was assessed on the dorsal aspect of each forearm in 10 participants while Tloc was manipulated in an A-B-A-B fashion between neutral (33.0°C) and hot (38.5°C). Finally, local heating to 44°C was performed to elicit maximal SkBF. Data are presented as a percentage of maximal cutaneous vascular conductance (CVC), calculated as laser-Doppler flux divided by mean arterial pressure. Tloc manipulations performed during normothermia had significantly greater effects on CVC than during hyperthermia. The decreased modification to SkBF from the Tloc changes during hyperthermia suggests that strong reflexive vasodilation attenuates local SkBF control mechanisms.