952 resultados para Veii, Conquest of, 396 B.C.
Resumo:
Hay un ejemplar encuadernado con: Discret rahonament, quiexa formal que fan contra el Micalet de la Seu, la Torre de Espioca, y la Torre de Paterna, sobre la gran visita que éste tingué en lo dia cinc de Deembre [sic] ... per veure y admirar tan magnífica obra y deliciosa vista ... Carlos Quart (que Deu guart) y el señor Don Fernando de Borbó ... : (XVIII/1105).
Resumo:
Contiene: Glosas de un amante, que se despide de su dama, hechas por el A, B, C ; Respuesta de la Dama en las otras letras restantes del abecedario
Resumo:
Activation of the transcription factor nuclear factor kappa B (NF-κB) is controlled by proteolysis of its inhibitory subunit (IκB) via the ubiquitin-proteasome pathway. Signal-induced phosphorylation of IκBα by a large multisubunit complex containing IκB kinases is a prerequisite for ubiquitination. Here, we show that FWD1 (a mouse homologue of Slimb/βTrCP), a member of the F-box/WD40-repeat proteins, is associated specifically with IκBα only when IκBα is phosphorylated. The introduction of FWD1 into cells significantly promotes ubiquitination and degradation of IκBα in concert with IκB kinases, resulting in nuclear translocation of NF-κB. In addition, FWD1 strikingly evoked the ubiquitination of IκBα in the in vitro system. In contrast, a dominant-negative form of FWD1 inhibits the ubiquitination, leading to stabilization of IκBα. These results suggest that the substrate-specific degradation of IκBα is mediated by a Skp1/Cull 1/F-box protein (SCF) FWD1 ubiquitin-ligase complex and that FWD1 serves as an intracellular receptor for phosphorylated IκBα. Skp1/Cullin/F-box protein FWD1 might play a critical role in transcriptional regulation of NF-κB through control of IκB protein stability.
Resumo:
Cathepsin B (CTSB) is overexpressed in tumors of the lung, prostate, colon, breast, and stomach. However, evidence of primary genomic alterations in the CTSB gene during tumor initiation or progression has been lacking. We have found a novel amplicon at 8p22–23 that results in CTSB overexpression in esophageal adenocarcinoma. Amplified genomic NotI–HinfI fragments were identified by two-dimensional DNA electrophoresis. Two amplified fragments (D4 and D5) were cloned and yielded unique sequences. Using bacterial artificial chromosome clones containing either D4 or D5, fluorescent in situ hybridization defined a single region of amplification involving chromosome bands 8p22–23. We investigated the candidate cancer-related gene CTSB, and potential coamplified genes from this region including farnesyl-diphosphate farnesyltransferase (FDFT1), arylamine N-acetyltransferase (NAT-1), lipoprotein lipase (LPL), and an uncharacterized expressed sequence tag (D8S503). Southern blot analysis of 66 esophageal adenocarcinomas demonstrated only CTSB and FDFT1 were consistently amplified in eight (12.1%) of the tumors. Neither NAT-1 nor LPL were amplified. Northern blot analysis showed overexpression of CTSB and FDFT1 mRNA in all six of the amplified esophageal adenocarcinomas analyzed. CTSB mRNA overexpression also was present in two of six nonamplified tumors analyzed. However, FDFT1 mRNA overexpression without amplification was not observed. Western blot analysis confirmed CTSB protein overexpression in tumor specimens with CTSB mRNA overexpression compared with either normal controls or tumors without mRNA overexpression. Abundant extracellular expression of CTSB protein was found in 29 of 40 (72.5%) of esophageal adenocarcinoma specimens by using immunohistochemical analysis. The finding of an amplicon at 8p22–23 resulting in CTSB gene amplification and overexpression supports an important role for CTSB in esophageal adenocarcinoma and possibly in other tumors.
Resumo:
Topological frustration in an energetically unfrustrated off-lattice model of the helical protein fragment B of protein A from Staphylococcus aureus was investigated. This Gō-type model exhibited thermodynamic and kinetic signatures of a well-designed two-state folder with concurrent collapse and folding transitions and single exponential kinetics at the transition temperature. Topological frustration is determined in the absence of energetic frustration by the distribution of Fersht φ values. Topologically unfrustrated systems present a unimodal distribution sharply peaked at intermediate φ, whereas highly frustrated systems display a bimodal distribution peaked at low and high φ values. The distribution of φ values in protein A was determined both thermodynamically and kinetically. Both methods yielded a unimodal distribution centered at φ = 0.3 with tails extending to low and high φ values, indicating the presence of a small amount of topological frustration. The contacts with high φ values were located in the turn regions between helices I and II and II and III, intimating that these hairpins are in large part required in the transition state. Our results are in good agreement with all-atom simulations of protein A, as well as lattice simulations of a three- letter code 27-mer (which can be compared with a 60-residue helical protein). The relatively broad unimodal distribution of φ values obtained from the all-atom simulations and that from the minimalist model for the same native fold suggest that the structure of the transition state ensemble is determined mostly by the protein topology and not energetic frustration.
Resumo:
Increased cardiovascular mortality occurs in diabetic patients with or without coronary artery disease and is attributed to the presence of diabetic cardiomyopathy. One potential mechanism is hyperglycemia that has been reported to activate protein kinase C (PKC), preferentially the β isoform, which has been associated with the development of micro- and macrovascular pathologies in diabetes mellitus. To establish that the activation of the PKCβ isoform can cause cardiac dysfunctions, we have established lines of transgenic mice with the specific overexpression of PKCβ2 isoform in the myocardium. These mice overexpressed the PKCβ2 isoform transgene by 2- to 10-fold as measured by mRNA, and proteins exhibited left ventricular hypertrophy, cardiac myocyte necrosis, multifocal fibrosis, and decreased left ventricular performance without vascular lesions. The severity of the phenotypes exhibited gene dose-dependence. Up-regulation of mRNAs for fetal type myosin heavy chain, atrial natriuretic factor, c-fos, transforming growth factor, and collagens was also observed. Moreover, treatment with a PKCβ-specific inhibitor resulted in functional and histological improvement. These findings have firmly established that the activation of the PKCβ2 isoform can cause specific cardiac cellular and functional changes leading to cardiomyopathy of diabetic or nondiabetic etiology.
Resumo:
We previously reported the presence of a novel variant (β-T594M) of the amiloride-sensitive Na+ channel (ASSC) in which the threonine residue at position 594 in the β-subunit has been replaced by a methionine residue. Electrophysiological studies of the ASSC on Epstein–Barr virus (EBV)-transformed lymphocytes carrying this variant showed that the 8-(4-chlorophenylthio) adenosine 3′:5′-cyclic monophosphate (8cpt-cAMP)-induced responses were enhanced when compared to wild-type EBV-transformed lymphocytes. Furthermore, in wild-type EBV-transformed cells, the 8cpt-cAMP-induced response was totally blocked by the phorbol ester, phorbol 12-myristate 13-acetate (PMA). This inhibitory effect of PMA was blocked by a protein kinase C inhibitor, chelerythrine. We now have identified individuals who are homozygous for this variant, and showed that PMA had no effect on the 8cpt-cAMP-induced responses in the EBV-transformed lymphocytes from such individuals. Cells heterozygous for this variant showed mixed responses to PMA, with the majority of cells partially inhibited by PMA. Our results demonstrate that an alteration in a single amino acid residue in the β-subunit of the ASSC can lead to a total loss of inhibition to PMA, and establish the β-subunit as having an important role in conferring a regulatory effect on the ASSC of lymphocytes.
Resumo:
Protein kinase C (PKC) isoforms, α, βI, and γ of cPKC subgroup, δ and ɛ of nPKC subgroup, and ζ of aPKC subgroup, were tyrosine phosphorylated in COS-7 cells in response to H2O2. These isoforms isolated from the H2O2-treated cells showed enhanced enzyme activity to various extents. The enzymes, PKC α and δ, recovered from the cells were independent of lipid cofactors for their catalytic activity. Analysis of mutated molecules of PKC δ showed that tyrosine residues, which are conserved in the catalytic domain of the PKC family, are critical for PKC activation induced by H2O2. These results suggest that PKC isoforms can be activated through tyrosine phosphorylation in a manner unrelated to receptor-coupled hydrolysis of inositol phospholipids.
Resumo:
We determined that a pigeon cytochrome c-derived peptide, p43–58, possesses two anchor residues, 46 and 54, for binding with the I-Ab molecule that are compatible to the position 1 (P1) and position 9 (P9) of the core region in the major histocompatibility complex (MHC) class II binding peptides, respectively. In the present study to analyze each binding site between P1 and P9 of p43–58 to either I-Ab or T cell antigen receptor (TCR), we investigated T cell responses to a series of peptides (P2K, P3K, P4K, P5K, P6K, P7K, and P8E) that sequentially substituted charged amino acid residues for the residues at P2 to P8 of p43–58. T cells from C57BL/10 (I-Ab) mice immunized with P4K or P6K did not mount appreciable proliferative responses to the immunogens, but those primed with other peptides (P2K, P3K, P5K, P7K, and P8E) showed substantial responses in an immunogen-specific manner. It was demonstrated by binding studies that P1 and P9 functioned as main anchors and P4 and P6 functioned as secondary anchors to I-Ab. Analyses of Vβ usage of T cell lines specific for these analogs suggested that P8 interacts with the complementarity-determining region 1 (CDR1)/CDR2 of the TCR β chain. Furthermore, sequencing of the TCR on T cell hybridomas specific for these analogs indicated that P5 interacts with the CDR3 of the TCR β chain. The present findings are consistent with the three-dimensional structure of the trimolecular complex that has been reported for TCR/peptide/MHC class I molecules.
Resumo:
Niemann–Pick disease type C (NP-C) is an autosomal recessive lipidosis linked to chromosome 18q11–12, characterized by lysosomal accumulation of unesterified cholesterol and delayed induction of cholesterol-mediated homeostatic responses. This cellular phenotype is identifiable cytologically by filipin staining and biochemically by measurement of low-density lipoprotein-derived cholesterol esterification. The mutant Chinese hamster ovary cell line (CT60), which displays the NP-C cellular phenotype, was used as the recipient for a complementation assay after somatic cell fusions with normal and NP-C murine cells suggested that this Chinese hamster ovary cell line carries an alteration(s) in the hamster homolog(s) of NP-C. To narrow rapidly the candidate interval for NP-C, three overlapping yeast artificial chromosomes (YACs) spanning the 1 centimorgan human NP-C interval were introduced stably into CT60 cells and analyzed for correction of the cellular phenotype. Only YAC 911D5 complemented the NP-C phenotype, as evidenced by cytological and biochemical analyses, whereas no complementation was obtained from the other two YACs within the interval or from a YAC derived from chromosome 7. Fluorescent in situ hybridization indicated that YAC 911D5 was integrated at a single site per CT60 genome. These data substantially narrow the NP-C critical interval and should greatly simplify the identification of the gene responsible in mouse and man. This is the first demonstration of YAC complementation as a valuable adjunct strategy for positional cloning of a human gene.
Resumo:
Activation of protein kinase C (PKC) protects the heart from ischemic injury; however, its mechanism of action is unknown, in part because no model for chronic activation of PKC has been available. To test whether chronic, mild elevation of PKC activity in adult mouse hearts results in myocardial protection during ischemia or reperfusion, hearts isolated from transgenic mice expressing a low level of activated PKCβ throughout adulthood (β-Tx) were compared with control hearts before ischemia, during 12 or 28 min of no-flow ischemia, and during reperfusion. Left-ventricular-developed pressure in isolated isovolumic hearts, normalized to heart weight, was similar in the two groups at baseline. However, recovery of contractile function was markedly improved in β-Tx hearts after either 12 (97 ± 3% vs. 69 ± 4%) or 28 min of ischemia (76 ± 8% vs. 48 ± 3%). Chelerythrine, a PKC inhibitor, abolished the difference between the two groups, indicating that the beneficial effect was PKC-mediated. 31P NMR spectroscopy was used to test whether modification of intracellular pH and/or preservation of high-energy phosphate levels during ischemia contributed to the cardioprotection in β-Tx hearts. No difference in intracellular pH or high-energy phosphate levels was found between the β-Tx and control hearts at baseline or during ischemia. Thus, long-term modest increase in PKC activity in adult mouse hearts did not alter baseline function but did lead to improved postischemic recovery. Furthermore, our results suggest that mechanisms other than reduced acidification and preservation of high-energy phosphate levels during ischemia contribute to the improved recovery.
Resumo:
ATP-sensitive potassium (“KATP”) channels are rapidly inhibited by intracellular ATP. This inhibition plays a crucial role in the coupling of electrical activity to energy metabolism in a variety of cells. The KATP channel is formed from four each of a sulfonylurea receptor (SUR) regulatory subunit and an inwardly rectifying potassium (Kir6.2) pore-forming subunit. We used systematic chimeric and point mutagenesis, combined with patch-clamp recording, to investigate the molecular basis of ATP-dependent inhibition gating of mouse pancreatic β cell KATP channels expressed in Xenopus oocytes. We identified distinct functional domains of the presumed cytoplasmic C-terminal segment of the Kir6.2 subunit that play an important role in this inhibition. Our results suggest that one domain is associated with inhibitory ATP binding and another with gate closure.
Resumo:
Small nucleolar RNAs (snoRNAs) are a large family of eukaryotic RNAs that function within the nucleolus in the biogenesis of ribosomes. One major class of snoRNAs is the box C/D snoRNAs named for their conserved box C and box D sequence elements. We have investigated the involvement of cis-acting sequences and intranuclear structures in the localization of box C/D snoRNAs to the nucleolus by assaying the intranuclear distribution of fluorescently labeled U3, U8, and U14 snoRNAs injected into Xenopus oocyte nuclei. Analysis of an extensive panel of U3 RNA variants showed that the box C/D motif, comprised of box C′, box D, and the 3′ terminal stem of U3, is necessary and sufficient for the nucleolar localization of U3 snoRNA. Disruption of the elements of the box C/D motif of U8 and U14 snoRNAs also prevented nucleolar localization, indicating that all box C/D snoRNAs use a common nucleolar-targeting mechanism. Finally, we found that wild-type box C/D snoRNAs transiently associate with coiled bodies before they localize to nucleoli and that variant RNAs that lack an intact box C/D motif are detained within coiled bodies. These results suggest that coiled bodies play a role in the biogenesis and/or intranuclear transport of box C/D snoRNAs.
Resumo:
We have shown previously that interleukin-4 (IL-4) protects TS1αβ cells from apoptosis, but very little is known about the mechanism by which IL-4 exerts this effect. We found that Akt activity, which is dependent on phosphatidylinositol 3 kinase, is reduced in IL-4-deprived TS1αβ cells. Overexpression of wild-type Akt or a constitutively active Akt mutant protects cells from IL-4 deprivation-induced apoptosis. Readdition of IL-4 before the commitment point is able to restore Akt activity. We also show expression and c-Jun N-terminal kinase 2 activation after IL-4 deprivation. Overexpression of the constitutively activated Akt mutant in IL-4-deprived cells correlates with inhibition of c-Jun N-terminal kinase 2 activity. Finally, TS1αβ survival is independent of Bcl-2, Bcl-x, or Bax.