1000 resultados para VSC Control
Resumo:
This paper presents the new trend of FPGA (Field programmable Gate Array) based digital platform for the control of power electronic systems. There is a rising interest in using digital controllers in power electronic applications as they provide many advantages over their analog counterparts. A board comprising of Cyclone device EP1C12Q240C8 of Altera is used for developing this platform. The details of this board are presented. This developed platform can be used for the controller applications such as UPS, Induction Motor drives and front end converters. A real time simulation of a system can also be done. An open-loop induction motor drive has been implemented using this board and experimental results are presented.
Resumo:
In this paper two nonlinear model based control algorithms have been developed to monitor the magnetorheological (MR) damper voltage. The main advantage of the proposed algorithms is that it is possible to directly monitor the voltage required to control the structural vibration considering the effect of the supplied and commanded voltage dynamics of the damper. The efficiency of the proposed techniques has been shown and compared taking an example of a base isolated three-storey building under a set of seismic excitations. Comparison of the performances with a fuzzy based intelligent control algorithm and a widely used clipped optimal strategy has also been shown.
Resumo:
We study a zero sum differential game of mixed type where each player uses both control and stopping times. Under certain conditions we show that the value function for this problem exists and is the unique viscosity solution of the corresponding variational inequalities. We also show the existence of saddle point equilibrium for a special case of differential game.
Resumo:
Fluctuation of field emission current from carbon nanotubes (CNTs) poses certain difficulties for their use in nanobiomedical X-ray devices and imaging probes. This problem arises due to deformation of the CNTs due to electrodynamic force field and electron-phonon interaction. It is of great importance to have precise control of emitted electron beams very near the CNT tips. In this paper, a new array configuration with stacked array of CNTs is analysed and it is shown that the current density distribution is greatly localised at the middle of the array, that the scatter due to electrodynamic force field is minimised and that the temperature transients are much smaller compared to those in an array with random height distribution.
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. Such a vessel is a key enabling factor for operation and maintenance (O&M) of offshore wind-energy infrastructure. The control system designed is referred to as Boarding Control System (BCS). We investigate the performance of this system for a specific wind-farm service vessel–The Wave Craft. A two-modality vessel model is presented to account for the vessel free motion and motion whilst in contact with a wind-turbine. On a SES, the pressurized air cushion carries the majority of the vessel mass. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. This leads to a safer personnel transfer in developed sea-states than what is possible today. Results for the BCS is presented through simulation and model-scale craft testing.
Resumo:
The application of multilevel control strategies for load-frequency control of interconnected power systems is assuming importance. A large multiarea power system may be viewed as an interconnection of several lower-order subsystems, with possible change of interconnection pattern during operation. The solution of the control problem involves the design of a set of local optimal controllers for the individual areas, in a completely decentralised environment, plus a global controller to provide the corrective signal to account for interconnection effects. A global controller, based on the least-square-error principle suggested by Siljak and Sundareshan, has been applied for the LFC problem. A more recent work utilises certain possible beneficial aspects of interconnection to permit more desirable system performances. The paper reports the application of the latter strategy to LFC of a two-area power system. The power-system model studied includes the effects of excitation system and governor controls. A comparison of the two strategies is also made.
Resumo:
The UDP-glucuronosyltransferases (UGTs) are enzymes of the phase II metabolic system. These enzymes catalyze the transfer of α-D-glucuronic acid from UDP-glucuronic acid to aglycones bearing nucleophilic groups affording exclusively their corresponding β-D-glucuronides to render lipophilic endobiotics and xenobiotics more water soluble. This detoxification pathway aids in the urinary and biliary excretion of lipophilic compounds thus preventing their accumulation to harmful levels. The aim of this study was to investigate the effect of stereochemical and steric features of substrates on the glucuronidation catalyzed by UGTs 2B7 and 2B17. Furthermore, this study relates to the design and synthesis of novel, selective inhibitors that display high affinity for the key enzyme involved in drug glucuronidation, UGT2B7. The starting point for the development of inhibitors was to assess the influence of the stereochemistry of substrates on the UGT-catalyzed glucuronidation reaction. A set of 28 enantiomerically pure alcohols was subjected to glucuronidation assays employing the human UGT isoforms 2B7 and 2B17. Both UGT enzymes displayed high stereoselectivity, favoring the glucuronidation of the (R)-enantiomers over their respective mirror-image compounds. The spatial arrangement of the hydroxy group of the substrate determined the rate of the UGT-catalyzed reaction. However, the affinity of the enantiomeric substrates to the enzymes was not significantly influenced by the spatial orientation of the nucleophilic hydroxy group. Based on these results, a rational approach for the design of inhibitors was developed by addressing the stereochemical features of substrate molecules. Further studies showed that the rate of the enzymatic glucuronidation of substrates was also highly dependent on the steric demand in vicinity of the nucleophilic hydroxy group. These findings provided a rational approach to turn high-affinity substrates into true UGT inhibitors by addressing stereochemical and steric features of substrate molecules. The tricyclic sesquiterpenols longifolol and isolongifolol were identified as high-affinity substrates which displayed high selectivity for the UGT isoform 2B7. These compounds served therefore as lead structures for the design of potent and selective inhibitors for UGT2B7. Selective and potent inhibitors were prepared by synthetically modifying the lead compounds longifolol and isolongifolol taking stereochemical and steric features into account. The best inhibitor of UGT2B7, β-phenyllongifolol, displayed an inhibition constant of 0.91 nM.
Resumo:
The aims of this investigation were to enumerate coliforms in fresh mangoes, puree, cheeks, and cheeks-in-puree in order to determine the source of these organisms in the processed products, to determine methods for their control, and to identify coliforms isolated from cheeks-in-puree to determine whether they have any public health significance. Product from four processors was tested on two occasions. The retail packs of cheeks-in-puree having the highest coliform counts were those in which raw puree was added to the cheeks. Coliform counts in these samples ranged between 1.4 × 103 and 5.4 × 104 cfu/g. Pasteurisation reduced the coliform count of raw puree to < 5 cfu/g. Forty-seven percent of the 73 colonies, isolated as coliforms on the basis of their colony morphology on violet red bile agar, were identified as Klebsiella pneumoniae using the ATB 32E Identification System. Klebsiella strains were tested for growth at 10 °C, faecal coliform response, and fermentation of -melizitose, to differentiate the three phenotypically similar strains, K. pneumoniae, K. terrigena and K planticola. Results indicated that 41% of K. pneumoniae isolates gave reactions typical of K. pneumoniae. A further 44% of strains gave an atypical reaction pattern for these tests and were designated ‘psychrotrophic’ K. pneumoniae. Klebsiella pneumoniae counts of between 2.1 × 103 and 4.9 × 104 cfu/g were predicted to occur in the retail packs of mango cheeks-in-puree produced by the processors who constituted this product with raw puree. In view of the opportunistic pathogenic nature of K. pneumoniae, its presence in these products is considered undesirable and steps, such as pasteurisation of puree, should be taken in order to inactivate it
Resumo:
Fortunately, plants have developed highly effective mechanisms with which to defend themselves when attacked by potentially disease-causing microorganisms. If not, then they would succumb to the many pathogenic fungi, bacteria, viruses, nematodes and insect pests, and disease would prevail. These natural defence systems of plants can be deliberately activated to provide some protection against the major pathogens responsible for causing severe yield losses in agricultural and horticultural crops. This is the basis of what is known as ‘induced’ or ‘acquired’ disease resistance in plants. Although the phenomenon of induced resistance has been known amongst plant pathologists for over 100 years, its inclusion into pest and disease management programmes has been a relatively recent development, ie. within the last 5 years. This review will discuss very briefly some of the characteristics of the induced resistance phenomenon, outline some of the advantages and limitations to its implementation and provide some examples within a postharvest pathology context. Finally some approaches being investigated by the fruit pathology team at DPI Indooroopilly and collaborators will be outlined.
Resumo:
This paper analyses the performance of particular wave-energy converter that uses the gyroscopic effects of a large rotating fly-wheel in combination with a controlled power-take-off device. Controlled gyroscopic forces have been used successfully in the past to reduce the motion of marine structures. With appropriately designed power-take-off elements, gyroscopic forces can be controlled to optimise the extracted energy from the motion of marine structures.
Resumo:
This paper proposes a multilevel inverter configuration which produces a hexagonal voltage space vector structure in the lower modulation region and a 12-sided polygonal space vector structure in the overmodulation region. A conventional multilevel inverter produces 6n plusmn 1 (n = odd) harmonics in the phase voltage during overmodulation and in the extreme square-wave mode of operation. However, this inverter produces a 12-sided polygonal space vector location, leading to the elimination of 6n plusmn 1 (n = odd) harmonics in the overmodulation region extending to a final 12-step mode of operation with a smooth transition. The benefits of this arrangement are lower losses and reduced torque pulsation in an induction motor drive fed from this converter at higher modulation indexes. The inverter is fabricated by using three conventional cascaded two-level inverters with asymmetric dc-bus voltages. A comparative simulation study of the harmonic distortion in the phase voltage and associated losses in conventional multilevel inverters and that of the proposed inverter is presented in this paper. Experimental validation on a prototype shows that the proposed converter is suitable for high-power applications because of low harmonic distortion and low losses.
Resumo:
This paper describes a method of adjusting the stator power factor angle for the control of an induction motor fed from a current source inverter (CSI) based on the concept of space vectors (or park vectors). It is shown that under steady state, if the torque angle is kept constant over the entire operating range, it has the advantage of keeping the slip frequency constant. This can be utilized to dispose of the speed feedback and simplify the control scheme for the drive, such that the stator voltage integral zero crossings alone can be used as a feedback for deciding the triggering instants of the CSI thyristors under stable operation of the system. A closed-loop control strategy is developed for the drive based on this principle, using a microprocessor-based control system and is implemented on a laboratory prototype CSI fed induction motor drive.
Resumo:
Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha-') provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20~40 L ha-'). The PB-20 provided better spray coverage on the upper surface of middle leaves and both Surfaces of outer leaves when compared with the Selecta I2V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha - ' for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers
Resumo:
Non-parametric difference tests such as triangle and duo-trio tests traditionally are used to establish differences or similarities between products. However they only supply the researcher with partial answers and often further testing is required to establish the nature, size and direction of differences. This paper looks at the advantages of the difference from control (DFC) test (also known as degree of difference test) and discusses appropriate applications of the test. The scope and principle of the test, panel composition and analysis of results are presented with the aid of suitable examples. Two of the major uses of the DFC test are in quality control and shelf-life testing. The role DFC takes in these areas and the use of other tests to complement the testing is discussed. Controls or standards are important in both these areas and the use of standard products, mental and written standards and blind controls are highlighted. The DFC test has applications in products where the duo-trio and triangle tests cannot be used because of the normal heterogeneity of the product. While the DFC test is a simple difference test it can be structured to give the researcher more valuable data and scope to make informed decisions about their product.