958 resultados para Urban Development
Resumo:
Axial loads of load bearing elements impact on the vibration characteristics. Several methods have been developed to quantify axial loads and hence axial deformations of individual structural members using their natural frequencies. Nevertheless, these methods cannot be applied to individual members in structural framing systems as the natural frequency is a global parameter for the entire framing system. This paper proposes an innovative method which uses modal strain energy phenomenon to quantify axial deformations of load bearing elements of structural framing systems. The procedure is illustrated through examples and results confirm that the proposed method has an ability to quantify the axial deformations of individual elements of structural framing systems
Resumo:
Axial shortening in vertical load bearing elements of reinforced concrete high-rise buildings is caused by the time dependent effects of shrinkage, creep and elastic shortening of concrete under loads. Such phenomenon has to be predicted at design stage and then updated during and after construction of the buildings in order to provide mitigation against the adverse effects of differential axial shortening among the elements. Existing measuring methods for updating previous predictions of axial shortening pose problems. With this in mind, a innovative procedure with a vibration based parameter called axial shortening index is proposed to update axial shortening of vertical elements based on variations in vibration characteristics of the buildings. This paper presents the development of the procedure and illustrates it through a numerical example of an unsymmetrical high-rise building with two outrigger and belt systems. Results indicate that the method has the capability to capture influence of different tributary areas, shear walls of outrigger and belt systems as well as the geometric complexity of the building.
Resumo:
The vibration characteristics of structural members are significantly influenced by the axial loads and hence axial deformation of the member. Numerous methods have been developed to quantify the axial loads in individual structural members using their natural frequencies. However, the findings of these methods cannot be applied to individual members in a structural framing system as the natural frequency is a global parameter for the entire framing system. This paper proposes an innovative method which uses the modal flexibility parameter to quantify axial deformations in load bearing elements of structural framing systems. The proposed method is illustrated through examples and results highlight that the method can be used to quantify the axial deformations of Individual elements of structural framing systems.
Resumo:
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam. The unique LSB section is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. To date, limited research has been undertaken on the shear buckling behaviour of LSBs with torsionally rigid, rectangular hollow flanges. For the shear design of LSB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the flange and web elements. Therefore finite element analyses were carried out to investigate the elastic shear buckling behaviour of LSB sections including the effect of true support conditions at the junction between their flange and web elements. An improved equation for the higher elastic shear buckling coefficient of LSBs was developed and included in the shear capacity equations of Australian cold-formed steel codes. Predicted ultimate shear capacity results were compared with available experimental results, both of which showed considerable improvement to the shear capacities of LSBs. A study on the shear flow distribution of LSBs was also undertaken prior to the elastic buckling analysis study. This paper presents the details of this investigation and the results including the shear flow distribution of LSBs. Keywords: LiteSteel beam, Elastic shear buckling, Shear flow, Cold-formed steel structures, Slender web, Hollow flanges.
Resumo:
This paper presents the details of an experimental study on the shear behaviour and strength of a recently developed, cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB). The new LSB sections with rectangular hollow flanges are produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. They are commonly used as flexural members in buildings. However, no research has been undertaken on the shear behaviour of LSBs. Therefore a detailed experimental study involving 36 shear tests was undertaken to investigate the shear behaviour of 10 different LSB sections. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at midspan until failure using both single and back to back LSB arrangements. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. Comparison of experimental results with corresponding predictions from the current Australian and North American cold-formed steel design rules showed that the current design rules are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Appropriate improvements have been proposed for the shear strength of LSBs based on the design equations in the North American Specification. This paper presents the details of this experimental study and the results. When reduced height web side plates or only one web side plate was used, the shear capacity of LSB was reduced. Details of these tests and the results are also presented in this paper. Keywords: LiteSteel beam, Shear strength, Shear tests, Cold-formed steel structures, Direct strength method, Slender web, Hollow flanges.
Resumo:
The privatization of major Australian airports in the late 1990s unleashed an unprecedented development wave as corporate lessees implemented ambitious business plans. While planning and environmental regulations governing on-airport development were significantly enhanced, there has been national disquiet about a governance regime that remains under the auspices of the federal government and is not effectively integrated into state and local decision-making machinery. Tensions in major airport regions have been exacerbated by the building of highly conspicuous non-aeronautical developments approved with no determining input by local decision-makers as well as the growing pressures on off-airport locations for aviation-related development. This paper canvasses this context and overviews the evolving structure of planning controls for Australia’s privatized federal airports. A range of issues surfacing through the National Aviation Policy Review process in 2008–2009 is described.
Resumo:
Differential distortion comprising axial shortening and consequent rotation in concrete buildings is caused by the time dependent effects of “shrinkage”, “creep” and “elastic” deformation. Reinforcement content, variable concrete modulus, volume to surface area ratio of elements and environmental conditions influence these distortions and their detrimental effects escalate with increasing height and geometric complexity of structure and non vertical load paths. Differential distortion has a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing methods for quantifying these effects are unable to capture the complexity of such time dependent effects. This paper develops a numerical procedure that can accurately quantify the differential axial shortening that contributes significantly to total distortion in concrete buildings by taking into consideration (i) construction sequence and (ii) time varying values of Young’s Modulus of reinforced concrete and creep and shrinkage. Finite element techniques are used with time history analysis to simulate the response to staged construction. This procedure is discussed herein and illustrated through an example.
Resumo:
The present paper examines whether the potential advantages of the expanding practice of web-based public participation only complement the benefits of the traditional techniques, or are empowering enough to replace them. The question is examined in a real-world case of neighbourhood revitalization, in which both techniques were practiced simultaneously. Comparisons are made at four major planning junctions, in order to study the contributions of each technique to the qualities of involvement, trust, and empowerment. The results show that web-based participants not only differ from the participants of traditional practices, but they also differ from each other on the basis of their type of web participation. The results indicate that web-based participation is an effective and affective complementary means of public participation, but it cannot replace the traditional unmediated techniques.
Resumo:
Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement. ---------------- The Port currently has a network of stormwater sample collection points where event based samples together with grab samples are tested for a range of water quality parameters. Whilst this information provides a ‘snapshot’ of the pollutants being washed from the catchment/s, it does not allow for a quantifiable assessment of total contaminant loads being discharged to the waters of Moreton Bay. It also does not represent pollutant build-up and wash-off from the different land uses across a broader range of rainfall events which might be expected. As such, it is difficult to relate stormwater quality to different pollutant sources within the Port environment. ----------------- Consequently, this would make the source tracking of pollutants to receiving waters extremely difficult and in turn the ability to implement appropriate mitigation measures. Also, without this detailed understanding, the efficacy of the various stormwater quality mitigation measures implemented cannot be determined with certainty. --------------- Current knowledge on port stormwater runoff quality Currently, little knowledge exists with regards to the pollutant generation capacity specific to port land uses as these do not necessarily compare well with conventional urban industrial or commercial land use due to the specific nature of port activities such as inter-modal operations and cargo management. Furthermore, traffic characteristics in a port area are different to a conventional urban area. Consequently, as data inputs based on an industrial and commercial land uses for modelling purposes is questionable. ------------------ A comprehensive review of published research failed to locate any investigations undertaken with regards to pollutant build-up and wash-off for port specific land uses. Furthermore, there is very limited information made available by various ports worldwide about the pollution generation potential of their facilities. Published work in this area has essentially focussed on the water quality or environmental values in the receiving waters such as the downstream bay or estuary. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is the undertaking of ‘cutting edge’ research to strengthen the environmental custodianship of the Port area. This project aims to develop a port specific stormwater quality model to allow informed decision making in relation to stormwater quality improvement in the context of the increased growth of the Port. --------------- Stage 1 of the research project focussed on the assessment of pollutant build-up and wash-off using rainfall simulation from the current Port of Brisbane facilities with the longer-term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. Investigation of complex processes such as pollutant wash-off using naturally occurring rainfall events has inherent difficulties. These can be overcome using simulated rainfall for the investigations. ----------------- The deliverables for Stage 1 included the following: * Pollutant build-up and wash-off profiles for six primary land uses within the Port of Brisbane to be used for water quality model development. * Recommendations with regards to future stormwater quality monitoring and pollution mitigation measures. The outcomes are expected to deliver the following benefits to the Port of Brisbane: * The availability of Port specific pollutant build-up and wash-off data will enable the implementation of customised stormwater pollution mitigation strategies. * The water quality data collected would form the baseline data for a Port specific water quality model for mitigation and predictive purposes. * To be at the cutting-edge in terms of water quality management and environmental best practice in the context of port infrastructure. ---------------- Conclusions: The important conclusions from the study are: * It confirmed that the Port environment is unique in terms of pollutant characteristics and is not comparable to typical urban land uses. * For most pollutant types, the Port land uses exhibited lower pollutant concentrations when compared to typical urban land uses. * The pollutant characteristics varied across the different land uses and were not consistent in terms of the land use. Hence, the implementation of stereotypical structural water quality improvement devices could be of limited value. * The <150m particle size range was predominant in suspended solids for pollutant build-up as well as wash-off. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this specific particle size range needs to be removed. ------------------- Recommendations: Based on the study results the following preliminary recommendations are made: * Due to the appreciable variation in pollutant characteristics for different port land uses, any water quality monitoring stations should preferably be located such that source areas can be easily identified. * The study results having identified significant pollutants for the different land uses should enable the development of a more customised water quality monitoring and testing regime targeting the critical pollutants. * A ‘one size fits all’ approach may not be appropriate for the different port land uses due to the varying pollutant characteristics. As such, pollution mitigation will need to be specifically tailored to suit the specific land use. * Any structural measures implemented for pollution mitigation to be effective should have the capability to remove suspended solids of size <150m. * Based on the results presented and the particularly the fact that the Port land uses cannot be compared to conventional urban land uses in relation to pollutant generation, consideration should be given to the development of a port specific water quality model.
Resumo:
Despite the general evolution and broadening of the scope of the concept of infrastructure in many other sectors, the energy sector has maintained the same narrow boundaries for over 80 years. Energy infrastructure is still generally restricted in meaning to the transmission and distribution networks of electricity and, to some extent, gas. This is especially true in the urban development context. This early 20th century system is struggling to meet community expectations that the industry itself created and fostered for many decades. The relentless growth in demand and changing political, economic and environmental challenges require a shift from the traditional ‘predict and provide’ approach to infrastructure which is no longer economically or environmentally viable. Market deregulation and a raft of demand and supply side management strategies have failed to curb society’s addiction to the commodity of electricity. None of these responses has addressed the fundamental problem. This chapter presents an argument for the need for a new paradigm. Going beyond peripheral energy efficiency measures and the substitution of fossil fuels with renewables, it outlines a new approach to the provision of energy services in the context of 21st century urban environments.
Resumo:
In this study, the host-sensitivity and -specificity of JCV and BKV polyomaviruses were evaluated by testing wastewater/fecal samples from nine host groups in Southeast Queensland, Australia. The JCV and BKV polyomaviruses were detected in 48 human wastewater samples collected from the primary and secondary effluent suggesting high sensitivity of these viruses in human wastewater. Of the 81 animal wastewater/fecal samples tested, 80 were PCR negative for this marker. Only one sample from pig wastewater was positive. Nonetheless, the overall host-specificity of these viruses to differentiate between human and animal wastewater/fecal samples was 0.99. To our knowledge, this is the first study in Australia that reports the high specificity of JCV and BKV polyomaviruses. To evaluate the field application of these viruses to detect human fecal pollution, 20 environmental samples were collected from a coastal river. Of the 20 samples tested, 15% and 70% samples exceeded the regulatory guidelines for E. coli and enterococci levels for marine waters. In all, 5 (25%) samples were PCR positive for JCV and BKV indicated the presence of human fecal pollution in the studied river. The results suggest that JCV and BKV detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.
Resumo:
This paper treats the crush behaviour and energy absorption response of foam-filled conical tubes subjected to oblique impact loading. Dynamic computer simulation techniques validated by experimental testing are used to carry out a parametric study of such devices. The study aims at quantifying the energy absorption of empty and foam-filled conical tubes under oblique impact loading, for variations in the load angle and geometry parameters of the tube. It is evident that foam-filled conical tubes are preferable as impact energy absorbers due to their ability to withstand oblique impact loads as effectively as axial impact loads. Furthermore, it is found that the energy absorption capacity of filled tubes is better maintained compared to that of empty tubes as the load orientation increases. The primary outcome of this study is design information for the use of foam-filled conical tubes as energy absorbers where oblique impact loading is expected.
Resumo:
Abstract Providing water infrastructure in times of accelerating climate change presents interesting new problems. Expanding demands must be met or managed in contexts of increasingly constrained sources of supply, raising ethical questions of equity and participation. Loss of agricultural land and natural habitats, the coastal impacts of desalination plants and concerns over re-use of waste water must be weighed with demand management issues of water rationing, pricing mechanisms and inducing behaviour change. This case study examines how these factors impact on infrastructure planning in South East Queensland, Australia: a region with one of the developed world’s most rapidly growing populations, which has recently experienced the most severe drought in its recorded history. Proposals to match forecast demands and potential supplies for water over a 20 year period are reviewed by applying ethical principles to evaluate practical plans to meet the water needs of the region’s activities and settlements.
Resumo:
The diversity of community voices in the SEQ ‘bellwether region’ has grown from a muted murmur in the mid twentieth century supporting provision of urban services, rural conservation and green belts, to the current clamour against over-development, and in favour of protecting local and regional open space, wetlands and natural habitats. This in turn has often resulted in vigorous campaigns against unpopular roads, dams, dumps and tall buildings. In the last twenty years community issues have played a major part in local government elections throughout the region and have even helped unseat (in 1995-1996) a state government which discounted their authenticity and community resolve.
Resumo:
Over many centuries of settlement, Vietnamese inhabitants have developed a vernacular architecture that is well adapted to the region’s climatic and topographical conditions. Vernacular Vietnamese housing uses natural systems to create a built environment that integrates well with nature. The vernacular combines site-sensitive, passive solar design, natural materials and appropriate structure to achieve harmony among nature, humans and the built environment. Unfortunately, these unique features have not been applied in contemporary Vietnamese architecture, which displays energy-intensive materials and built forms. This research is analysing how environmentally-responsive elements of vernacular architecture could be applied to modern sustainable housing in Vietnam. Elements of many types of vernacular architecture throughout the country are reviewed as precedents for future building planning and design. The paper also looks at culturally and ecologically appropriate legislative and voluntary options for encouraging more sustainable housing.