916 resultados para UWB,ranging,localizzazione indoor,TWR,TDOA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlling free-ranging livestock requires low-stress cues to alter animal behaviour. Recently modulated sound and electric shock were demonstrated to be effective in controlling free-ranging cattle. In this study the behaviour of 60, 300 kg Belmont Red heifers were observed for behavioural changes when presented cues designed to impede their movement through an alley. The heifers were given an overnight drylot shrink off feed but not drinking water prior to being tested. Individual cattle were allowed to move down a 6.5 m wide alley towards a pen of peers and feed located 71 m from their point of release. Each animal was allowed to move through the alley unimpeded five times to establish a basal behavioural pattern. Animals were then randomly assigned to treatments consisting of sound plus shock, vibration plus shock, a visual cue plus shock, shock by itself and a control. The time each animal required to reach the pen of peers and feed was recorded. If the animal was prevented from reaching the pen of peers and feed by not penetrating through the cue barrier at set points along the alley for at least 60 sec the test was stopped and the animal was returned to peers located behind the release pen. Cues and shock were manually applied from a laptop while animals were observed from a 3.5 m tower located outside the alley. Electric shock, sound, vibration and Global Position System (GPS) hardware were housed in a neck collar. Results and implications will be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we discuss how a network of sensors and robots can cooperate to solve important robotics problems such as localization and navigation. We use a robot to localize sensor nodes, and we then use these localized nodes to navigate robots and humans through the sensorized space. We explore these novel ideas with results from two large-scale sensor network and robot experiments involving 50 motes, two types of flying robot: an autonomous helicopter and a large indoor cable array robot, and a human-network interface. We present the distributed algorithms for localization, geographic routing, path definition and incremental navigation. We also describe how a human can be guided using a simple hand-held device that interfaces to this same environmental infrastructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinical experience plays an important role in the development of expertise, particularly when coupled with reflection on practice. There is debate, however, regarding the amount of clinical experience that is required to become an expert. Various lengths of practice have been suggested as suitable for determining expertise, ranging from five years to 15 years. This study aimed to investigate the association between length of experience and therapists’ level of expertise in the field of cerebral palsy with upper limb hypertonicity using an empirical procedure named Cochrane–Weiss–Shanteau (CWS). The methodology involved re-analysis of quantitative data collected in two previous studies. In Study 1, 18 experienced occupational therapists made hypothetical clinical decisions related to 110 case vignettes, while in Study 2, 29 therapists considered 60 case vignettes drawn randomly from those used in Study 1. A CWS index was calculated for each participant's case decisions. Then, in each study, Spearman's rho was calculated to identify the correlations between the duration of experience and level of expertise. There was no significant association between these two variables in both studies. These analyses corroborated previous findings of no association between length of experience and judgemental performance. Therefore, length of experience may not be an appropriate criterion for determining level of expertise in relation to cerebral palsy practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were undertaken to study drying kinetics of different shaped moist food particulates during heat pump assisted fluidised bed drying. Three particular geometrical shapes of parallelepiped, cylindrical and spheres were selected from potatoes (aspect ratio = 1:1, 2:1, 3:1), cut beans (length: diameter = 1:1, 2:1, 3:1) and peas respectively. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Due to complex hydrodynamics of the fluidised beds, drying kinetics are dryer or material specific. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for seeded cells to organize into a functioning tissue. In this report we have investigated the effects of different concentrations of silk fibroin protein on three-dimensional (3D) scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by the freeze drying technique, with the pore sizes ranging from 50 to 300 lm. The pore sizes of the scaffolds decreased as the concentration of fibroin protein increased. Human bone marrow mesenchymal stromal cells (BMSC) transfected with the BMP7 gene were cultured in these scaffolds. A cell viability colorimetric assay, alkaline phosphatase assay and reverse transcription-polymerase chain reaction were performed to analyze the effect of pore size on cell growth, the secretion of extracellular matrix (ECM) and osteogenic differentiation. Cell migration in 3D scaffolds was confirmed by confocal microscopy. Calvarial defects in SCID mice were used to determine the bone forming ability of the silk fibroin scaffolds incorporating BMSC expressing BMP7. The results showed that BMSC expressing BMP7 preferred a pore size between 100 and 300 lm in silk fibroin protein fabricated scaffolds, with better cell proliferation and ECM production. Furthermore, in vivo transplantation of the silk fibroin scaffolds combined with BMSC expressing BMP7 induced new bone formation. This study has shown that an optimized pore architecture of silk fibroin scaffolds can modulate the bioactivity of BMP7-transfected BMSC in bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transport regulators consider that, with respect to pavement damage, heavy vehicles (HVs) are the riskiest vehicles on the road network. That HV suspension design contributes to road and bridge damage has been recognised for some decades. This thesis deals with some aspects of HV suspension characteristics, particularly (but not exclusively) air suspensions. This is in the areas of developing low-cost in-service heavy vehicle (HV) suspension testing, the effects of larger-than-industry-standard longitudinal air lines and the characteristics of on-board mass (OBM) systems for HVs. All these areas, whilst seemingly disparate, seek to inform the management of HVs, reduce of their impact on the network asset and/or provide a measurement mechanism for worn HV suspensions. A number of project management groups at the State and National level in Australia have been, and will be, presented with the results of the project that resulted in this thesis. This should serve to inform their activities applicable to this research. A number of HVs were tested for various characteristics. These tests were used to form a number of conclusions about HV suspension behaviours. Wheel forces from road test data were analysed. A “novel roughness” measure was developed and applied to the road test data to determine dynamic load sharing, amongst other research outcomes. Further, it was proposed that this approach could inform future development of pavement models incorporating roughness and peak wheel forces. Left/right variations in wheel forces and wheel force variations for different speeds were also presented. This led on to some conclusions regarding suspension and wheel force frequencies, their transmission to the pavement and repetitive wheel loads in the spatial domain. An improved method of determining dynamic load sharing was developed and presented. It used the correlation coefficient between two elements of a HV to determine dynamic load sharing. This was validated against a mature dynamic loadsharing metric, the dynamic load sharing coefficient (de Pont, 1997). This was the first time that the technique of measuring correlation between elements on a HV has been used for a test case vs. a control case for two different sized air lines. That dynamic load sharing was improved at the air springs was shown for the test case of the large longitudinal air lines. The statistically significant improvement in dynamic load sharing at the air springs from larger longitudinal air lines varied from approximately 30 percent to 80 percent. Dynamic load sharing at the wheels was improved only for low air line flow events for the test case of larger longitudinal air lines. Statistically significant improvements to some suspension metrics across the range of test speeds and “novel roughness” values were evident from the use of larger longitudinal air lines, but these were not uniform. Of note were improvements to suspension metrics involving peak dynamic forces ranging from below the error margin to approximately 24 percent. Abstract models of HV suspensions were developed from the results of some of the tests. Those models were used to propose further development of, and future directions of research into, further gains in HV dynamic load sharing. This was from alterations to currently available damping characteristics combined with implementation of large longitudinal air lines. In-service testing of HV suspensions was found to be possible within a documented range from below the error margin to an error of approximately 16 percent. These results were in comparison with either the manufacturer’s certified data or test results replicating the Australian standard for “road-friendly” HV suspensions, Vehicle Standards Bulletin 11. OBM accuracy testing and development of tamper evidence from OBM data were detailed for over 2000 individual data points across twelve test and control OBM systems from eight suppliers installed on eleven HVs. The results indicated that 95 percent of contemporary OBM systems available in Australia are accurate to +/- 500 kg. The total variation in OBM linearity, after three outliers in the data were removed, was 0.5 percent. A tamper indicator and other OBM metrics that could be used by jurisdictions to determine tamper events were developed and documented. That OBM systems could be used as one vector for in-service testing of HV suspensions was one of a number of synergies between the seemingly disparate streams of this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If one clear argument emerged from my doctoral thesis in political science, it is that there is no agreement as to what democracy is. There are over 40 different varieties of democracy ranging from those in the mainstream with subtle or minute differences to those playing by themselves in the corner. And many of these various types of democracy are very well argued, empirically supported, and highly relevant to certain polities. The irony is that the thing which all of these democratic varieties or the ‘basic democracy’ that all other forms of democracy stem from, is elusive. There is no international agreement in the literature or in political practice as to what ‘basic democracy’ is and that is problematic as many of us use the word ‘democracy’ every day and it is a concept of tremendous importance internationally. I am still uncertain as to why this problem has not been resolved before by far greater minds than my own, and it may have something to do with the recent growth in democratic theory this past decade and the innovative areas of thought my thesis required, but I think I’ve got the answer. By listing each type of democracy and filling the column next to this list with the literature associated with these various styles of democracy, I amassed a large and comprehensive body of textual data. My research intended to find out what these various styles of democracy had in common and to create a taxonomy (like the ‘tree of life’ in biology) of democracy to attempt at showing how various styles of democracy have ‘evolved’ over the past 5000 years.ii I then ran a word frequency analysis program or a piece of software that counts the 100 most commonly used words in the texts. This is where my logic came in as I had to make sense of these words. How did they answer what the most fundamental commonalities are between 40 different styles of democracy? I used a grounded theory analysis which required that I argue my way through these words to form a ‘theory’ or plausible explanation as to why these particular words and not others are the important ones for answering the question. It came down to the argument that all 40 styles of democracy analysed have the following in common 1) A concept of a citizenry. 2) A concept of sovereignty. 3) A concept of equality. 4) A concept of law. 5) A concept of communication. 6) And a concept of selecting officials. Thus, democracy is a defined citizenry with its own concept of sovereignty which it exercises through the institutions which support the citizenry’s understandings of equality, law, communication, and the selection of officials. Once any of these 6 concepts are defined in a particular way it creates a style of democracy. From this, we can also see that there can be more than one style of democracy active in a particular government as a citizenry is composed of many different aggregates with their own understandings of the six concepts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is a digital version of a dissertation that was first submitted in partial fulfillment of the Degree of Doctor of Philosophy at the Queensland University of Technology (QUT) in March 1994. The work was concerned with problems of self-organisation and organisation ranging from local to global levels of hierarchy. It considers organisations as living entities from local to global things that a living entity – more particularly, an individual, a body corporate or a body politic - must know and do to maintain an existence – that is to remain viable – or to be sustainable. The term ‘land management’ as used in 1994 was later subsumed into a more general concept of ‘natural resource management’ and then merged with ideas about sustainable socioeconomic and sustainable ecological development. The cybernetic approach contains many cognitive elements of human observation, language and learning that combine into production processes. The approach tends to highlight instances where systems (or organisations) can fail because they have very little chance of succeeding. Thus there are logical necessities as well as technical possibilities in designing, constructing, operating and maintaining production systems that function reliably over extended periods. Chapter numbers and titles to the original thesis are as follows: 1. Land management as a problem of coping with complexity 2. Background theory in systems theory and cybernetic principles 3. Operationalisation of cybernetic principles in Beer’s Viable System Model 4. Issues in the design of viable cadastral surveying and mapping organisation 5. An analysis of the tendency for fragmentation in surveying and mapping organisation 6. Perambulating the boundaries of Sydney – a problem of social control under poor standards of literacy 7. Cybernetic principles in the process of legislation 8. Closer settlement policy and viability in agricultural production 9. Rate of return in leasing Crown lands

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dasheen mosaic potyvirus (DsMV) is an important virus affecting taro. The virus has been found wherever taro is grown and infects both the edible and ornamental aroids, causing yield losses of up to 60%. The presence of DsMV, and other viruses,prevents the international movement of taro germplasm between countries. This has a significant negative impact on taro production in many countries due to the inability to access improved taro lines produced in breeding programs. To overcome this problem, sensitive and reliable virus diagnostic tests need to be developed to enable the indexing of taro germplasm. The aim of this study was to generate an antiserum against a recombinant DsMV coat protein (CP) and to develop a serological-based diagnostic test that would detect Pacific Island isolates of the virus. The CP-coding region of 16 DsMV isolates from Papua New Guinea, Samoa, Solomon Islands, French Polynesia, New Caledonia and Vietnam were amplified,cloned and sequenced. The size of the CP-coding region ranged from 939 to 1038 nucleotides and encoded putative proteins ranged from 313 to 346 amino acids, with the molecular mass ranging from 34 to 38 kDa. Analysis ofthe amino acid sequences revealed the presence of several amino acid motifs typically found in potyviruses,including DAG, WCIE/DN, RQ and AFDF. When the amino acid sequences were compared with each other and the DsMV sequences on the database, the maximum variability was21.9%. When the core region ofthe CP was analysed, the maximum variability dropped to 6% indicating most variability was present in the N terminus. Within seven PNG isolates ofDsMV, the maximum variability was 16.9% and 3.9% over the entire CP-coding region and core region, respectively. The sequence ofPNG isolate P1 was most similar to all other sequences. Phylogenetic analysis indicated that almost all isolates grouped according to their provenance. Further, the seven PNG isolates were grouped according to the region within PNG from which they were obtained. Due to the extensive variability over the entire CP-coding region, the core region ofthe CP ofPNG isolate Pl was cloned into a protein expression vector and expressed as a recombinant protein. The protein was purified by chromatography and SDS-PAGE and used as an antigen to generate antiserum in a rabbit. In western blots, the antiserum reacted with bands of approximately 45-47 kDa in extracts from purified DsMV and from known DsMV -infected plants from PNG; no bands were observed using healthy plant extracts. The antiserum was subsequently incorporated into an indirect ELISA. This procedure was found to be very sensitive and detected DsMV in sap diluted at least 1:1,000. Using both western blot and ELISA formats,the antiserum was able to detect a wide range ofDsMV isolates including those from Australia, New Zealand, Fiji, French Polynesia, New Caledonia, Papua New Guinea, Samoa, Solomon Islands and Vanuatu. These plants were verified to be infected with DsMV by RT-PCR. In specificity tests, the antiserum was also found to react with sap from plants infected with SCMV, PRSV-P, PRSV-W, but not with PVY or CMV -infected plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patterns of connectivity among local populations influence the dynamics of regional systems, but most ecological models have concentrated on explaining the effect of connectivity on local population structure using dynamic processes covering short spatial and temporal scales. In this study, a model was developed in an extended spatial system to examine the hypothesis that long term connectivity levels among local populations are influenced by the spatial distribution of resources and other habitat factors. The habitat heterogeneity model was applied to local wild rabbit populations in the semi-arid Mitchell region of southern central Queensland (the Eastern system). Species' specific population parameters which were appropriate for the rabbit in this region were used. The model predicted a wide range of long term connectivity levels among sites, ranging from the extreme isolation of some sites to relatively high interaction probabilities for others. The validity of model assumptions was assessed by regressing model output against independent population genetic data, and explained over 80% of the variation in the highly structured genetic data set. Furthermore, the model was robust, explaining a significant proportion of the variation in the genetic data over a wide range of parameters. The performance of the habitat heterogeneity model was further assessed by simulating the widely reported recent range expansion of the wild rabbit into the Mitchell region from the adjacent, panmictic Western rabbit population system. The model explained well the independently determined genetic characteristics of the Eastern system at different hierarchic levels, from site specific differences (for example, fixation of a single allele in the population at one site), to differences between population systems (absence of an allele in the Eastern system which is present in all Western system sites). The model therefore explained the past and long term processes which have led to the formation and maintenance of the highly structured Eastern rabbit population system. Most animals exhibit sex biased dispersal which may influence long term connectivity levels among local populations, and thus the dynamics of regional systems. When appropriate sex specific dispersal characteristics were used, the habitat heterogeneity model predicted substantially different interaction patterns between female-only and combined male and female dispersal scenarios. In the latter case, model output was validated using data from a bi-parentally inherited genetic marker. Again, the model explained over 80% of the variation in the genetic data. The fact that such a large proportion of variability is explained in two genetic data sets provides very good evidence that habitat heterogeneity influences long term connectivity levels among local rabbit populations in the Mitchell region for both males and females. The habitat heterogeneity model thus provides a powerful approach for understanding the large scale processes that shape regional population systems in general. Therefore the model has the potential to be useful as a tool to aid in the management of those systems, whether it be for pest management or conservation purposes.