954 resultados para UP-REGULATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic alcohol abuse causes neurotoxicity and the development of tolerance and dependence. At the molecular level, however, knowledge about mechanisms underlying alcoholism remains limited. In this study we examined the superior frontal cortex, one of the most vulnerable brain regions, of alcoholics and of age- and gender-matched control subjects by means of antibody microarrays and Western blot analyses, and identified an up-regulation of beta-catenin level in the superior frontal cortex of alcoholics. Beta-catenin is the orthologue of the Drosophila armadillo segment polarity gene and a down stream component of the Wnt and Akt signaling pathway. Beta-catenin was identified as a cell adhesion molecule of the cadherin family which binds to the actin cytoskeleton. Genetic and biochemical analyses also found that beta-catenin can be translocated from the cytoplasm to the nucleus and acts as a transcription factor. In addition, electron microscopy performed on rat brain tissue sections has localized the beta-catenin and cadherin complexes to the synapses where they border the active zone. Because of the multi-functional role of beta-catenin in the nervous system, this study provides the premise for further investigation of mechanisms underlying the up-regulation of beta-catenin in alcoholism, which may have considerable pathogenic and therapeutic relevance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (α-tocopherol). We have tested the hypothesis that α-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 μM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received α-tocopherol supplements (400 IU RRR-α-tocopherol /day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM- 1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-κB in isolated resting monocytes, nor any effect of α-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and α-tocopherol concentration. In conclusion, α-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration. © W. S. Maney & Son Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expression of the protein crosslinking enzyme tissue transglutaminase (TG2, tTG), the ubiquitous member of transglutaminase family, can be regulated by multiple factors. Although it has been suggested that TG2 can be involved in apoptotic cell death, high levels of enzyme have also been associated with cell survival in response to different stimuli. Furthermore, evidence indicates that increases in TG2 production cause enzyme translocation to cell membrane. Cell stress can also lead to TG2 accumulation on the cell surface and in the extracellular matrix resulting in changes in cell-matrix interactions. Here, we discuss the underlying mechanisms of TG2 up-regulation induced by various stimuli including glutamate exposure, calcium influx, oxidative stress, UV, and inflammatory cytokines. These findings agree with a postulated role for transglutaminases in molecular mechanisms involved in several diseases suggesting that cross-linking reactions could be a relevant part of the biochemical changes observed in pathological conditions. © 2007 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adipocytes isolated from cachectic mice bearing the MAC 16 tumour showed over a 3-fold increase in lipolytic response to both low concentrations of isoprenaline and a tumour-derived lipid mobilizing factor (LMF). This was reflected by an enhanced stimulation of adenylate cyclase in plasma membrane fractions of adipocytes in the presence of both factors. There was no up-regulation of adenylate cyclase in response to forskolin, suggesting that the effect arose from a change in receptor number or G-protein expression. Immunoblotting of adipocyte membranes from mice bearing the MAC16 tumour showed an increased expression of Gαs up to 10% weight loss and a reciprocal decrease in Gα. There was also an increased expression of Gαs and a decrease in Gα in adipose tissue from a patient with cancer-associated weight loss compared with a non-cachectic cancer patient. The changes in G-protein expression were also seen in adipose tissue of normal mice administered pure LMF as well as in 3T3L1 adipocytes in vitro. The changes in G-protein expression induced by LMF were attenuated by the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). This suggests that this tumour-derived lipolytic factor acts to sensitize adipose tissue to lipolytic stimuli, and that this effect is attenuated by EPA, which is known to preserve adipose tissue in cancer cachexia. © 2001 Cancer Research Campaign.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cancer cachexia is characterized by selective depletion of skeletal muscle protein reserves. Soleus muscles from mice bearing a cachexia-inducing tumor (MAC16) showed an increased protein degradation in vitro, as measured by tyrosine release, when compared with muscles from nontumor-bearing animals. After incubation under conditions that modify different proteolytic systems, lysosomal, calcium-dependent, and ATP-dependent proteolysis were found to contribute to the elevated protein catabolism. Treatment of mice bearing the MAC16 tumor with the polyunsaturated fatty acid, eicosapentaenoic acid (EPA), attenuated loss of body weight and significantly suppressed protein catabolism in soleus muscles through an inhibition of an ATP-dependent proteolytic pathway. The ATP-ubiquitin-dependent proteolytic pathway is considered to play a major role in muscle catabolism in cachexia, and functional proteasome activity, as determined by “chymotrypsin-like” enzyme activity, was significantly elevated in gastrocnemius muscle of mice bearing the MAC16 tumor as weight loss progressed. When animals bearing the MAC16 tumor were treated with EPA, functional proteasome activity was completely suppressed, together with attenuation of the expression of 20S proteasome a-subunits and the p42 regulator, whereas there was no effect on the expression of the ubiquitin-conjugating enzyme (E214k). These results suggest that EPA induces an attenuation of the up-regulation of proteasome expression in cachectic mice, and this was correlated with an increase in myosin expression, confirming retention of contractile proteins. EPA also inhibited growth of the MAC16 tumor in a dose-dependent manner, and this correlated with suppression of the expression of the 20S proteasome a-subunits in tumor cells, suggesting that this may be the mechanism of tumor growth inhibition. Thus EPA antagonizes loss of skeletal muscle proteins in cancer cachexia by down-regulation of proteasome expression, and this may also be the mechanism for inhibition of tumor growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study the role of Akt/PKB (protein kinase B) in PIF- (proteolysis-inducing factor) induced protein degradation has been investigated in murine myotubes. PIF induced transient phosphorylation of Akt at Ser(473) within 30 min, which was attenuated by the PI3K (phosphoinositide 3-kinase) inhibitor LY294002 and the tyrosine kinase inhibitor genistein. Protein degradation was attenuated in myotubes expressing a dominant-negative mutant of Akt (termed DNAkt), compared with the wild-type variant, whereas it was enhanced in myotubes containing a constitutively active Akt construct (termed MyrAkt). A similar effect was observed on the induction of the ubiquitin-proteasome pathway. Phosphorylation of Akt has been linked to up-regulation of the ubiquitin-proteasome pathway through activation of NF-kappaB (nuclear factor kappaB) in a PI3K-dependent process. Protein degradation was attenuated by rapamycin, a specific inhibitor of mTOR (mammalian target of rapamycin), when added before, or up to 30 min after, addition of PIF. PIF induced transient phosphorylation of mTOR and the 70 kDa ribosomal protein S6 kinase. These results suggest that transient activation of Akt results in an increased protein degradation through activation of NF-kappaB and that this also allows for a specific synthesis of proteasome subunits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The up-regulation and trafficking of tissue transglutaminase (TG2) by tubular epithelial cells (TEC) has been implicated in the development of kidney scarring. TG2 catalyses the crosslinking of proteins via the formation of highly stable e(?-glutamyl) lysine bonds. We have proposed that TG2 may contribute to kidney scarring by accelerating extracellular matrix (ECM) deposition and by stabilising the ECM against proteolytic decay. To investigate this, we have studied ECM metabolism in Opossum kidney (OK) TEC induced to over-express TG2 by stable transfection and in tubular cells isolated from TG2 knockout mice. Increasing the expression of TG2 led to increased extracellular TG2 activity (p < 0.05), elevated e(?-glutamyl) lysine crosslinking in the ECM and higher levels of ECM collagen per cell by 3H-proline labelling. Immunofluorescence demonstrated that this was attributable to increased collagen III and IV levels. Higher TG2 levels were associated with an accelerated collagen deposition rate and a reduced ECM breakdown by matrix metalloproteinases (MMPs). In contrast, a lack of TG2 was associated with reduced e(?-glutamyl) lysine crosslinking in the ECM, causing reduced ECM collagen levels and lower ECM per cell. We report that TG2 contributes to ECM accumulation primarily by accelerating collagen deposition, but also by altering the susceptibility of the tubular ECM to decay. These findings support a role for TG2 in the expansion of the ECM associated with kidney scarring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Tissue transglutaminase 2 (TG2) is a Ca2+-dependent protein cross linking enzyme known to play an important role in a number of cell functions. Up-regulation of TG2 is thought to be involved in monocyte to macrophage differentiation and defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be fully elucidated. Cell surface-associated TG2 is now recognized as being important in regulating cell adhesion and migration, via its association with cell surface receptors such as syndecan-4, ß1 and ß3 integrin, but its extracellular role in the clearance of apoptotic cells is still not fully explored. Our work aims to characterize the role of TG2 and its partners (e.g. syndecan-4 and ß3 integrin) in macrophage function within the framework of apoptotic cell clearance. Both THP-1 cell-derived macrophage-like cells and primary human macrophages were analyzed for the expression and function of TG2. Macrophage-apoptotic cell interaction studies in the presence of TG2 inhibitors (both cell permeable and impermeable, irreversible and active site directed) resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. Macrophage cell surface TG2 and, in particular, its cell surface crosslinking activity was found to be crucial in dictating apoptotic cell clearance. Our further studies demonstrate syndecan-4 association with TG2 and imply possible cooperation of these proteins in apoptotic cell clearance. Knockdown studies of syndecan-4 reveal its importance in apoptotic cell clearance. Our current findings suggest that TG2 has a crucial but yet to be fully defined role in apoptotic cell clearance which seems to involve protein cross linking and interaction with other cell surface receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Transglutaminase-2 (TG2) is a Ca2+-dependent protein crosslinking enzyme known to play an important role in apoptotic cell clearance by macrophages through an ill-defined mechanism. Several studies have implicated TG2 in the apoptosis programme e.g. raised TG2 levels in cells undergoing apoptosis; increased cell death with down-regulation of TG2; up-regulation of TG2 in monocytes upon differentiation into macrophages. Defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be elucidated. Here we aim to characterise the role of TG2 in macrophage function with a focus on apoptotic cell clearance. THP-1 monocytes were induced to differentiate to macrophage-like cells by three different stimulants and were analysed for the presence of TG2. Macrophage-apoptotic cell interaction studies in the presence and absence of irreversible TG2 inhibitors resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. TG2 was expressed at the macrophage cell surface and its association with ß3 integrin expression suggests the possible link between TG2 and ß3 integrins. Our current findings suggest that TG2 had got a crucial but yet to be defined role in apoptotic cell clearance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: The requirement of adjuvants in subunit protein vaccination is well known yet their mechanisms of action remain elusive. Of the numerous mechanisms suggested, cationic liposomes appear to fulfil at least three: the antigen depot effect, the delivery of antigen to antigen presenting cells (APCs) and finally the danger signal. We have investigated the role of antigen depot effect with the use of dual radiolabelling whereby adjuvant and antigen presence in tissues can be quantified. In our studies a range of cationic liposomes and different antigens were studied to determine the importance of physical properties such as liposome surface charge, antigen association and inherent lipid immunogenicity. More recently we have investigated the role of liposome size with the cationic liposome formulation DDA:TDB, composed of the cationic lipid dimethyldioctadecylammonium (DDA) and the synthetic mycobacterial glycolipid trehalose 6,6’-dibehenate (TDB). Vesicle size is a frequently investigated parameter which is known to result in different routes of endocytosis. It has been postulated that targeting different routes leads to different intracellular signaling pathway activation and it is certainly true that numerous studies have shown vesicle size to have an effect on the resulting immune responses (e.g. Th1 vs. Th2). Aim: To determine the effect of cationic liposome size on the biodistribution of adjuvant and antigen, the ensuing humoral and cell-mediated immune responses and the uptake and activation of antigen by APCs including macrophages and dendritic cells. Methods: DDA:TDB liposomes were made to three different sizes (~ 0.2, 0.5 and 2 µm) followed by the addition of tuberculosis antigen Ag85B-ESAT-6 therefore resulting in surface adsorption. Liposome formulations were injected into Balb/c or C57Bl/6 mice via the intramuscular route. The biodistribution of the liposome formulations was followed using dual radiolabelling. Tissues including muscle from the site of injection and local draining lymph nodes were removed and liposome and antigen presence quantified. Mice were also immunized with the different vaccine formulations and cytokine production (from Ag85B-ESAT-6 restimulated splenocytes) and antibody presence in blood assayed. Furthermore, splenocyte proliferation after restimulating with Ag85B-ESAT-6 was measured. Finally, APCs were compared for their ability to endocytose vaccine formulations and the effect this had on the maturation status of the cell populations was compared. Flow cytometry and fluorescence labelling was used to investigate maturation marker up-regulation and efficacy of phagocytosis. Results: Our results show that for an efficient Ag85B-ESAT-6 antigen depot at the injection site, liposomes composed of DDA and TDB are required. There is no significant change in the presence of liposome or antigen at 6hrs or 24hrs p.i, nor does liposome size have an effect. Approximately 0.05% of the injected liposome dose is detected in the local draining lymph node 24hrs p.i however protein presence is low (<0.005% dose). Preliminary in vitro data shows liposome and antigen endocytosis by macrophages; further studies on this will be presented in addition to the results of the immunisation study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cachexia is a wasting syndrome often associated with malignancy, characterised by alterations in host metabolism and significant catabolism of host adipose tissue and skeletal muscle. The MAC16 murine adenocarcinoma is profoundly cachexigenic, inducing host weight-loss at relatively small tumour burden without the induction of anorexia. A 4DkDa factor capable of inducing lipolysis in vitro via an activation of adenylate cyclase (AC) has been isolated from the MAC16 tumour, and the urine of cachectic cancer patients, using a series of ion exchange and gel exclusion chromatography procedures. This lipid-mobilising factor (LMF) has been demonstrated to stimulate lipolysis in adipocytes dose-dependently via a signal transduction pathway involving, possibly, β3-adrenoceptors. Oral administration of the n-3 polyunsaturated fatty acid (PUFA) eicosapentaenoic acid (EPA) attenuated the progression of cachexia, but not the production of LMF, in MAC16 tumour-bearing mice, and was significantly incorporated into plasma phospholipids, skeletal muscle and adipose tissue. EPA supplemented cancer patients also demonstrated significantly increased plasma EPA concentrations. Decreased plasma membrane AC activity in response to LMF was observed in adipocytes isolated from mice receiving EPA. Incubation in vitro of adipocytes, or plasma membranes, with PUFAs significantly altered membrane fatty acid composition and attenuated the induction of both lipolysis, and AC activity, by LMF. The inhibitory actions of EPA, but not docosahexaenoic acid, are probably the consequence of an interaction with guanine nucleotide binding proteins (G-proteins). Progression of the cachectic state induced an up-regulation of adipocyte membrane expression of stimulatory G-proteins, allied with a concomitant down-regulation of inhibitory G-proteins, thus facilitating the catabolic actions of LMF, implying some tumour-mediated effect. A reversal of such alterations was observed upon oral administration of EPA, suggesting that the primary mechanism of action of this fatty acid is an inhibition of the end organ effects of LMF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cachexia is characterised by a progressive weight loss due to depletion of both skeletal muscle and adipose tissue. The loss of adipose tissue is due to the production of a tumour-derived lipid mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. The administration of LMF to a non-tumour bearing mice produced a rapid weight loss, with a specific reduction in carcass lipid with also some redistribution of lipid with the accumulation of lipid in the liver. There was also up-regulation of uncoupling protein-1 and -2 mRNA and protein expression in brown adipose tissue, suggesting that an adaptive process occurs due to increased energy mobilisation. There was also up-regulation of UCP-2 in the livers of LMF treated mice, suggesting a protective mechanism to the build up of lipid in the livers, which would produce free radical by-products. LMF was also shown to stimulate cyclic AMP production in CHO-K1 cells transfected with human -3 adrenergic receptors and inhibited by the -β3 antagonist SR59230A. LMF binding was also inhibited by SR59230A in isolated receptors. This suggests that LMF mediates its effects through a β3 adrenergic receptor. There were also changes in glucose and fatty acid uptake in LMF treated mice, which suggests metabolic changes are occurring. The study suggests that a tumour derived lipolytic factor acts through the 3 adrenoceptor producing effects on lipid mobilisation, energy expenditure and glucose metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cancer cachexia comprises unintentional and debilitating weight loss associated with certain tumour types. Fat loss in cachexia is mediated by a 43kDa Lipid Mobilising Factor (LMF) sharing homology with endogenous Zinc-α2-Glycoprotein (ZAG). LMF and ZAG induced significant lipolysis in isolated epidydimal adipose tissue. This is attenuated by co-incubation with 10μM of antagonist SR59230A and partially attenuated by 25μM PD098059 (indicating β3-AR and MAPK involvement respectively). LMF/ZAG induced in vitro lipid depletion in differentiated 3T3-L1 adipocytes that seen to comprise a significant increase in lipolysis (p<0.01), with only a modest decrease in lipid synthesis (p=0.09). ZAG significantly increased in vitro protein synthesis (p<0.01) in C2C12 myotubes (without an effect on protein degradation). This increase was activated at transcription and attenuated by co-incubation with 10μM SR59230A. Proteolytic digestion of ZAG and LMF followed by sephadex G50 chromatography yielded active fragments of 6-15kDa, indication the entire molecule was not required for bioactivity. Cachexigenic MAC16 cells demonstrated significant in vitro ZAG expression over non-cachexigenic MAC13 cells (p<0.001). WAT and BAT excised from MAC16 mice of varying weight loss demonstrated increased ZAG expression compared to controls. Dosing of NMRI mice with s/c ZAG failed to reproduce this up-regulation, thus another cachectic factor is responsible. 0.58nM LMF conferred significant protection against hydrogen peroxide, paraquat and bleomycin-induced oxidative stress in the non-cachexigenic MAC13 cell line. This protection was attenuated by 10μM SR59230A indicating a β3-AR mediated effect. In addition, 0.58nM LMF significantly up regulated UCP2 expression (p<0.001), (a mitochondrial protein implicated in the detoxification of ROS) implying this to be the mechanism by which survival was achieved. In vitro, LMF caused significant up-regulation of UCP1 in BAT and UCP2 and 3 in C2C12 myotubes. This increase in uncoupling protein expression further potentiates the negative energy balance and wasting observed in cachexia.