914 resultados para Type System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Papillomaviruses (PV) are double stranded (ds) DNA viruses that infect epithelial cells within the skin or mucosa, most often causing benign neoplasms that spontaneously regress. The immune system plays a key role in the defense against PVs. Since these viruses infect keratinocytes, we wanted to investigate the role of the keratinocyte in initiating an immune response to canine papillomavirus-2 (CPV-2) in the dog. Keratinocytes express a variety of pattern recognition receptors (PRR) to distinguish different cutaneous pathogens and initiate an immune response. We examined the mRNA expression patterns for several recently described cytosolic nucleic acid sensing PRRs in canine monolayer keratinocyte cultures using quantitative reverse transcription-polymerase chain reaction. Unstimulated normal cells were found to express mRNA for melanoma differentiation associated gene 5 (MDA5), retinoic acid-inducible gene I (RIG-I), DNA-dependent activation of interferon regulatory factors, leucine rich repeat flightless interacting protein 1, and interferon inducible gene 16 (IFI16), as well as their adaptor molecules myeloid differentiation primary response gene 88, interferon-β promoter stimulator 1, and endoplasmic reticulum-resident transmembrane protein stimulator of interferon genes. When stimulated with synthetic dsDNA [poly(dA:dT)] or dsRNA [poly(I:C)], keratinocytes responded with increased mRNA expression levels for interleukin-6, tumor necrosis factor-α, interferon-β, RIG-I, IFI16, and MDA5. There was no detectable increase in mRNA expression, however, in keratinocytes infected with CPV-2. Furthermore, CPV-2-infected keratinocytes stimulated with poly(dA:dT) and poly(I:C) showed similar mRNA expression levels for these gene products when compared with expression levels in uninfected cells. These results suggest that although canine keratinocytes contain functional PRRs that can recognize and respond to dsDNA and dsRNA ligands, they do not appear to recognize or initiate a similar response to CPV-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmacytoid dendritic cells (pDCs) are a rare population of circulating cells, which selectively express intracellular Toll-like receptors (TLR)-7 and TLR-9 and have the capacity to produce large amounts of type I IFNs (IFN-a/b) in response to viruses or host derived nucleic acid containing complexes. pDCs are normally absent in skin but accumulate in the skin of psoriasis patients where their chronic activation to produce IFN-a/b drives the disease formation. Whether pDCs and their activation to produce IFN-a/b play a functional role in healthy skin is unknown. Here we show that pDCs are rapidly and transiently recruited into healthy human and mouse skin upon epidermal injury. Infiltrating pDCs were found to sense nucleic acids in wounded skin via TLRs, leading to the production of IFN-a/b. The production of IFN-a/b was paralleled by a short lived expression of cathelicidins, which form complexes with extracellular nucleic acids and activated pDCs to produce IFN-a/b in vitro. In vivo, cathelicidins were sufficient but not necessary for the induction of IFN-a/b in wounded skin, suggesting redundancy of this pathway. Depletion of pDCs or inhibition of IFN-a/bR signaling significantly impaired the inflammatory response and delayed re-epithelialization of skin wounds. Thus we uncover a novel role of pDCs in sensing skin injury via TLR mediated recognition of nucleic acids and demonstrate their involvement in the early inflammatory process and wound healing response through the production of IFN-a/b.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The VirB/D4 type IV secretion system (T4SS) of Agrobacterium tumefaciens functions to transfer substrates to infected plant cells through assembly of a translocation channel and a surface structure termed a T-pilus. This thesis is focused on identifying contributions of VirB10 to substrate transfer and T-pilus formation through a mutational analysis. VirB10 is a bitopic protein with several domains, including a: (i) cytoplasmic N-terminus, (ii) single transmembrane (TM) α-helix, (iii) proline-rich region (PRR), and (iv) large C-terminal modified β-barrel. I introduced cysteine insertion and substitution mutations throughout the length of VirB10 in order to: (i) test a predicted transmembrane topology, (ii) identify residues/domains contributing to VirB10 stability, oligomerization, and function, and (iii) monitor structural changes accompanying energy activation or substrate translocation. These studies were aided by recent structural resolution of a periplasmic domain of a VirB10 homolog and a ‘core’ complex composed of homologs of VirB10 and two outer membrane associated subunits, VirB7 and VirB9. By use of the substituted cysteine accessibility method (SCAM), I confirmed the bitopic topology of VirB10. Through phenotypic studies of Ala-Cys insertion mutations, I identified “uncoupling” mutations in the TM and β-barrel domains that blocked T-pilus assembly but permitted substrate transfer. I showed that cysteine replacements in the C-terminal periplasmic domain yielded a variety of phenotypes in relation to protein accumulation, oligomerization, substrate transfer, and T-pilus formation. By SCAM, I also gained further evidence that VirB10 adopts different structural states during machine biogenesis. Finally, I showed that VirB10 supports substrate transfer even when its TM domain is extensively mutagenized or substituted with heterologous TM domains. By contrast, specific residues most probably involved in oligomerization of the TM domain are required for biogenesis of the T-pilus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sensory neurons (photoreceptors) in the visual system of Hermissenda are one site of plasticity produced by Pavlovian conditioning. A second site of plasticity produced by conditioning is the type I interneurons in the cerebropleural ganglia. Both photoreceptors and statocyst hair cells of the graviceptive system form monosynaptic connections with identified type I interneurons. Two proposed neurotransmitters in the graviceptive system, serotonin (5-HT) and gamma-aminobutyric acid (GABA), have been shown to modify synaptic strength and intrinsic neuronal excitability in identified photoreceptors. However, the potential role of 5-HT and GABA in plasticity of type I interneurons has not been investigated. Here we show that 5-HT increased the peak amplitude of light-evoked complex excitatory postsynaptic potentials (EPSPs), enhanced intrinsic excitability, and increased spike activity of identified type I(e(A)) interneurons. In contrast, 5-HT decreased spike activity and intrinsic excitability of type I(e(B)) interneurons. The classification of two categories of type I(e) interneurons was also supported by the observation that 5-HT produced opposite effects on whole cell steady-state outward currents in type I(e) interneurons. Serotonin produced a reduction in the amplitude of light-evoked complex inhibitory PSPs (IPSPs), increased spontaneous spike activity, decreased intrinsic excitability, and depolarized the resting membrane potential of identified type I(i) interneurons. In contrast to the effects of 5-HT, GABA produced inhibition in both types of I(e) interneurons and type I(i) interneurons. These results show that 5-HT and GABA can modulate the intrinsic excitability of type I interneurons independent of the presynaptic effects of the same transmitters on excitability and synaptic efficacy of photoreceptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Citrobacter rodentium is the rodent equivalent of human enteropathogenic Escherichia coli infection. This study investigated regulation of hepatic and renal cytochrome P450 (P450) mRNAs, hepatic P450 proteins, cytokines, and acute phase proteins during C. rodentium infection. Female C3H/HeOuJ (HeOu) and C3H/HeJ (HeJ) mice [which lack functional toll-like receptor 4 (TLR4)] were infected with C. rodentium by oral gavage and sacrificed 6 days later. Hepatic CYP4A10 and 4A14 mRNAs were decreased in HeOu mice (<4% of control). CYP3A11, 2C29, 4F14, and 4F15 mRNAs were reduced to 16 to 55% of control levels, whereas CYP2A5, 4F16, and 4F18 mRNAs were induced (180, 190, and 600% of control, respectively). The pattern of P450 regulation in HeJ mice was similar to that in HeOu mice for most P450s, with the exception of the TLR4 dependence of CYP4F15. Hepatic CYP2C, 3A, and 4A proteins in both groups were decreased, whereas CYP2E protein was not. Renal CYP4A10 and 4A14 mRNAs were significantly down-regulated in HeOu mice, whereas other P450s were unaffected. Most renal P450 mRNAs in infected HeJ mice were increased, notably CYP4A10, 4A14, 4F18, 2A5, and 3A13. Hepatic levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor alpha (TNFalpha) mRNAs were significantly increased in infected HeOu mice, whereas only TNFalpha mRNA was significantly increased in HeJ mice. Hepatic alpha1-acid glycoprotein was induced in both groups, whereas alpha-fibrinogen and angiotensinogen were unchanged. These data indicate that hepatic inflammation induced by C. rodentium infection is mainly TLR4-independent and suggest that hepatic P450 down-regulation in this model may be cytokine-mediated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upon sensing of peptide pheromone, Enterococcus faecalis efficiently transfers plasmid pCF10 through a type IV secretion (T4S) system to recipient cells. The PcfF accessory factor and PcfG relaxase initiate transfer by catalyzing strand-specific nicking at the pCF10 origin of transfer sequence (oriT). Here, we present evidence that PcfF and PcfG spatially coordinate docking of the pCF10 transfer intermediate with PcfC, a membrane-bound putative ATPase related to the coupling proteins of gram-negative T4S machines. PcfC and PcfG fractionated with the membrane and PcfF with the cytoplasm, yet all three proteins formed several punctate foci at the peripheries of pheromone-induced cells as monitored by immunofluorescence microscopy. A PcfC Walker A nucleoside triphosphate (NTP) binding site mutant (K156T) fractionated with the E. faecalis membrane and also formed foci, whereas PcfC deleted of its N-terminal putative transmembrane domain (PcfCDelta N103) distributed uniformly throughout the cytoplasm. Native PcfC and mutant proteins PcfCK156T and PcfCDelta N103 bound pCF10 but not pcfG or Delta oriT mutant plasmids as shown by transfer DNA immunoprecipitation, indicating that PcfC binds only the processed form of pCF10 in vivo. Finally, purified PcfCDelta N103 bound DNA substrates and interacted with purified PcfF and PcfG in vitro. Our findings support a model in which (i) PcfF recruits PcfG to oriT to catalyze T-strand nicking, (ii) PcfF and PcfG spatially position the relaxosome at the cell membrane to stimulate substrate docking with PcfC, and (iii) PcfC initiates substrate transfer through the pCF10 T4S channel by an NTP-dependent mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spinocerebellar Ataxia type 7 (SCA7) is a neurodegenerative disease caused by expansion of a CAG repeat encoding a polyglutamine tract in ATXN7, a component of the SAGA histone acetyltransferase (HAT) complex. Previous studies provided conflicting evidence regarding the effects of polyQ-ATXN7 on the activity of Gcn5, the HAT catalytic subunit of SAGA. Here I showed that reducing Gcn5 expression accelerates both cerebellar and retinal degeneration in a mouse model of SCA7. Deletion of Gcn5 in Purkinje cells in mice expressing wild type Atxn7, however, causes only mild ataxia and does not lead to the early lethality observed in SCA7 mice. Reduced Gcn5 expression strongly enhances retinopathy in SCA7 mice, but does not affect the transcriptional targets of Atxn7, as expression of these genes is not further altered by Gcn5 depletion. These findings demonstrate that loss of Gcn5 functions can contribute to the time of onset and severity of SCA7 phenotypes, but suggest that non-transcriptional functions of SAGA may play a role in neurodegeneration in this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphological analysis of neonatal rabbit retina suggests that the type-A horizontal cell acts as the pioneer cell for development of the OPL. It is the first mature element of the OPL, and it forms the infrastructure upon which the OPL accrues. The role of type-A horizontal cells in influencing postnatal development of the OPL was examined.^ GABAergic characteristics of the type-A horizontal cell were defined. The type-A horizontal cell was found to possess two more GABAergic characteristics in addition to those previously demonstrated, during a short period in early postnatal development: endogenous stores of GABA and the GABA precursor, glutamate. Lesioning the type-A horizontal cell resulted in their permanent loss in addition to the disappearance of cone terminals and a dramatic increase in rod terminals within the OPL. Thus the type-A cells are not a necessary prerequisite for positioning the OPL in postnatal development, but may be necessary for establishment of the normal photoreceptor mosaic.^ Since type-A horizontal cells possess a number of GABAergic qualities during the period of cone photoreceptor cell differentiation, and there are reports of GABA's trophic action in other developing neuronal systems; the role that GABAergic type-A horizontal cells play in directing photoreceptor differentiation was examined.^ Disrupting effects of GABA-A receptor antagonists indicate that type-A horizontal cells act as postsynaptic targets for the growing cone terminals of photoreceptor cells. These trophic or synaptic interactions may involve GABA-A receptors activated by GABA released from horizontal cells. These findings are consistent with the hypothesis that type-A horizontal cells act as pioneering cells in directing the postnatal development of the OPL.^ These studies offer an in depth analysis of the structural and chemical relationship between type-A horizontal cells and other elements of the OPL from which the roles of type-A horizontal cells and the GABA system in development can be defined. They contribute to our knowledge of both structural and GABAergic mechanisms involved in central nervous system development. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A patient classification system was developed integrating a patient acuity instrument with a computerized nursing distribution method based on a linear programming model. The system was designed for real-time measurement of patient acuity (workload) and allocation of nursing personnel to optimize the utilization of resources.^ The acuity instrument was a prototype tool with eight categories of patients defined by patient severity and nursing intensity parameters. From this tool, the demand for nursing care was defined in patient points with one point equal to one hour of RN time. Validity and reliability of the instrument was determined as follows: (1) Content validity by a panel of expert nurses; (2) predictive validity through a paired t-test analysis of preshift and postshift categorization of patients; (3) initial reliability by a one month pilot of the instrument in a practice setting; and (4) interrater reliability by the Kappa statistic.^ The nursing distribution system was a linear programming model using a branch and bound technique for obtaining integer solutions. The objective function was to minimize the total number of nursing personnel used by optimally assigning the staff to meet the acuity needs of the units. A penalty weight was used as a coefficient of the objective function variables to define priorities for allocation of staff.^ The demand constraints were requirements to meet the total acuity points needed for each unit and to have a minimum number of RNs on each unit. Supply constraints were: (1) total availability of each type of staff and the value of that staff member (value was determined relative to that type of staff's ability to perform the job function of an RN (i.e., value for eight hours RN = 8 points, LVN = 6 points); (2) number of personnel available for floating between units.^ The capability of the model to assign staff quantitatively and qualitatively equal to the manual method was established by a thirty day comparison. Sensitivity testing demonstrated appropriate adjustment of the optimal solution to changes in penalty coefficients in the objective function and to acuity totals in the demand constraints.^ Further investigation of the model documented: correct adjustment of assignments in response to staff value changes; and cost minimization by an addition of a dollar coefficient to the objective function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. Essential hypertension affects 25% of the US adult population and is a leading contributor to morbidity and mortality. Because BP is a multifactorial phenotype that resists simple genetic analysis, intermediate phenotypes within the complex network of BP regulatory systems may be more accessible to genetic dissection. The Renin-Angiotensin System (RAS) is known to influence intermediate and long-term blood pressure regulation through alterations in vascular tone and renal sodium and fluid resorption. This dissertation examines associations between renin (REN), angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin II type 1 receptor (AT1) gene variation and interindividual differences in plasma hormone levels, renal hemodynamics, and BP homeostasis.^ Methods. A total of 150 unrelated men and 150 unrelated women, between 20.0 and 49.9 years of age and free of acute or chronic illness except for a history of hypertension (11 men and 7 women, all off medications), were studied after one week on a controlled sodium diet. RAS plasma hormone levels, renal hemodynamics and BP were determined prior to and during angiotensin II (Ang II) infusion. Individuals were genotyped by PCR for a variable number tandem repeat (VNTR) polymorphism in REN, and for the following restriction fragment length polymorphisms (RFLP): AGT M235T, ACE I/D, and AT1 A1166C. Associations between clinical measurements and allelic variation were examined using multiple linear regression statistical models.^ Results. Women homozygous for the AT1 1166C allele demonstrated higher intracellular levels of sodium (p = 0.044). Men homozygous for the AGT T235 allele demonstrated a blunted decrement in renal plasma flow in response to Ang II infusion (p = 0.0002). There were no significant associations between RAS gene variation and interindividual variation in RAS plasma hormone levels or BP.^ Conclusions. Rather than identifying new BP controlling genes or alleles, the study paradigm employed in this thesis (i.e., measured genes, controlled environments and interventions) may provide mechanistic insight into how candidate genes affect BP homeostasis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Renin-Angiotensin system (RAS) regulates blood pressure through its effects on vascular tone, renal hemodynamics, and renal sodium and fluid balance. The genes encoding the four major components of the RAS, angiotensinogen, renin, angiotensin I-converting enzyme (ACE), and angiotensin II receptor type 1 (AT1), have been investigated as candidate genes in the pathogenesis of essential hypertension. However, studies have primarily focused on small samples of diseased individuals, and, therefore, have provided little information about the determinants of interindividual variation in blood pressure (BP) in the general population.^ Using data from a large population-based sample from Rochester, MN, I have evaluated the contribution of variation in the region of the RAS genes to interindividual variation in systolic, diastolic, and mean arterial pressure in the population-at-large. Marker genotype data from four polymorphisms located within or very near these genes were first collected on 3,974 individuals from 583 randomly ascertained three-generation pedigrees. Haseman-Elston regression and variance component methods of linkage analysis were then carried out to estimate the proportion of interindividual variance in BP attributable to the effects of variation at these four measured loci.^ A significant effect of the ACE locus on interindividual variation in mean arterial pressure (MAP) was detected in a sample of siblings belonging to the youngest generation. After allowing for measured covariates, this effect accounted for 15-25% of the interindividual variance in MAP, and was even greater in a subset with a positive family history of hypertension. When gender-specific analyses were carried out, this effect was significant in males but not in females. Extended pedigree analyses also provided evidence for an effect of the ACE locus on interindividual variation in MAP, but no difference between males and females was observed. Circumstantial evidence suggests that the ACE gene itself may be responsible for the observed effects on BP, although the possibility that other genes in the region may be at play cannot be excluded.^ No definitive evidence for an effect of the renin, angiotensinogen, or AT1 loci on interindividual variation in BP was obtained in this study, suggesting that the impact of these genes on BP may not be great in the Caucasian population-at-large. However, this does not preclude a larger effect of these genes in some subsets of individuals, especially among those with clinically manifest hypertension or coronary heart disease, or in other populations. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Early warning of future hypoglycemic and hyperglycemic events can improve the safety of type 1 diabetes mellitus (T1DM) patients. The aim of this study is to design and evaluate a hypoglycemia / hyperglycemia early warning system (EWS) for T1DM patients under sensor-augmented pump (SAP) therapy. Methods: The EWS is based on the combination of data-driven online adaptive prediction models and a warning algorithm. Three modeling approaches have been investigated: (i) autoregressive (ARX) models, (ii) auto-regressive with an output correction module (cARX) models, and (iii) recurrent neural network (RNN) models. The warning algorithm performs postprocessing of the models′ outputs and issues alerts if upcoming hypoglycemic/hyperglycemic events are detected. Fusion of the cARX and RNN models, due to their complementary prediction performances, resulted in the hybrid autoregressive with an output correction module/recurrent neural network (cARN)-based EWS. Results: The EWS was evaluated on 23 T1DM patients under SAP therapy. The ARX-based system achieved hypoglycemic (hyperglycemic) event prediction with median values of accuracy of 100.0% (100.0%), detection time of 10.0 (8.0) min, and daily false alarms of 0.7 (0.5). The respective values for the cARX-based system were 100.0% (100.0%), 17.5 (14.8) min, and 1.5 (1.3) and, for the RNN-based system, were 100.0% (92.0%), 8.4 (7.0) min, and 0.1 (0.2). The hybrid cARN-based EWS presented outperforming results with 100.0% (100.0%) prediction accuracy, detection 16.7 (14.7) min in advance, and 0.8 (0.8) daily false alarms. Conclusion: Combined use of cARX and RNN models for the development of an EWS outperformed the single use of each model, achieving accurate and prompt event prediction with few false alarms, thus providing increased safety and comfort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest that CYP2D6 may have a function in the central nervous system. 2. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type (WT) C57BL/6 mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including the CYP2D6 gene and 5'- and 3'-flanking sequences. 3. Human CYP2D6 was expressed not only in the liver but also in the brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice, either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of L-carnitine, acetyl-L-carnitine, pantothenic acid, 2'-deoxycytidine diphosphate (dCDP), anandamide, N-acetylglucosaminylamine and a down-regulation of stearoyl-L-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. 4. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function.