811 resultados para Two-stage converter
Resumo:
A method is outlined for optimising graph partitions which arise in mapping un- structured mesh calculations to parallel computers. The method employs a combination of iterative techniques to both evenly balance the workload and minimise the number and volume of interprocessor communications. They are designed to work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. The algorithms can also be used for dynamic load-balancing and a clustering technique can additionally be employed to speed up the whole process. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds.
Resumo:
A method is outlined for optimising graph partitions which arise in mapping unstructured mesh calculations to parallel computers. The method employs a relative gain iterative technique to both evenly balance the workload and minimise the number and volume of interprocessor communications. A parallel graph reduction technique is also briefly described and can be used to give a global perspective to the optimisation. The algorithms work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds. The algorithms can also be used for dynamic load-balancing, reusing existing partitions and in this case the procedures are much faster than static techniques, provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data.
Resumo:
The gallstone ileus is a rare complication of cholelithiasis and it represents the 1-4% of small intestinal mechanical obstruction. Gallstone is generally wedged in the terminal ileum, even if unusual locations have been described. The literature reports a very high morbidity and mortality, often because misdiagnosis or delayed diagnosis. There is no unique opinion in literature about the choice between one-stage and two-stage surgery. We report a clinical case that summarizes the diagnostic and therapeutic difficulties of gallstone ileus.
Resumo:
A two stage approach to performing ab initio calculations on medium and large sized molecules is described. The first step is to perform SCF calculations on small molecules or molecular fragments using the OPIT Program. This employs a small basis set of spherical and p-type Gaussian functions. The Gaussian functions can be identified very closely with atomic cores, bond pairs, lone pairs, etc. The position and exponent of any of the Gaussian functions can be varied by OPIT to produce a small but fully optimised basis set. The second stage is the molecular fragments method. As an example of this, Gaussian exponents and distances are taken from an OPIT calculation on ethylene and used unchanged in a single SCF calculation on benzene. Approximate ab initio calculations of this type give much useful information and are often preferable to semi-empirical approaches, since the nature of the approximations involved is much better defined.
Resumo:
Nonlinear thermo-mechanical properties of advanced polymers are crucial to accurate prediction of the process induced warpage and residual stress of electronics packages. The Fiber Bragg grating (FBG) sensor based method is advanced and implemented to determine temperature and time dependent nonlinear properties. The FBG sensor is embedded in the center of the cylindrical specimen, which deforms together with the specimen. The strains of the specimen at different loading conditions are monitored by the FBG sensor. Two main sources of the warpage are considered: curing induced warpage and coefficient of thermal expansion (CTE) mismatch induced warpage. The effective chemical shrinkage and the equilibrium modulus are needed for the curing induced warpage prediction. Considering various polymeric materials used in microelectronic packages, unique curing setups and procedures are developed for elastomers (extremely low modulus, medium viscosity, room temperature curing), underfill materials (medium modulus, low viscosity, high temperature curing), and epoxy molding compound (EMC: high modulus, high viscosity, high temperature pressure curing), most notably, (1) zero-constraint mold for elastomers; (2) a two-stage curing procedure for underfill materials and (3) an air-cylinder based novel setup for EMC. For the CTE mismatch induced warpage, the temperature dependent CTE and the comprehensive viscoelastic properties are measured. The cured cylindrical specimen with a FBG sensor embedded in the center is further used for viscoelastic property measurements. A uni-axial compressive loading is applied to the specimen to measure the time dependent Young’s modulus. The test is repeated from room temperature to the reflow temperature to capture the time-temperature dependent Young’s modulus. A separate high pressure system is developed for the bulk modulus measurement. The time temperature dependent bulk modulus is measured at the same temperatures as the Young’s modulus. The master curve of the Young’s modulus and bulk modulus of the EMC is created and a single set of the shift factors is determined from the time temperature superposition. The supplementary experiments are conducted to verify the validity of the assumptions associated with the linear viscoelasticity. The measured time-temperature dependent properties are further verified by a shadow moiré and Twyman/Green test.
Resumo:
In many studies of the side-chain liquid crystalline polymers (SCLCPs) bearing azobenzene mesogens as pendant groups, obtaining the orientation of azobenzene mesogens at a macroscopic scale as well as its control is important, because it impacts many properties related to the cooperative motion characteristic of liquid crystals and the trans-cis photoisomerization of the azobenzene molecules. Various means can be used to align the mesogens in the polymers, including rubbed surface, mechanical stretching or shearing, and electric or magnetic field. In the case of azobenzene-containing SCLCPs, another method consists in using linearly polarized light (LPL) to induce orientation of azobenzene mesogens perpendicular to the polarization direction of the excitation light, and such photoinduced orientation has been the subject of numerous studies. In the first study realized in this thesis (Chapter 1), we carried out the first systematic investigation on the interplay of the mechanically and optically induced orientation of azobenzene mesogens as well as the effect of thermal annealing in a SCLCP and a diblock copolymer comprising two SCLCPs bearing azobenzene and biphenyl mesogens, respectively. Using a supporting-film approach previously developed by our group, a given polymer film can be first stretched in either the nematic or smectic phase to yield orientation of azobenzene mesogens either parallel or perpendicular to the strain direction, then exposed to unpolarized UV light to erase the mechanically induced orientation upon the trans–cis isomerization, followed by linearly polarized visible light for photoinduced reorientation as a result of the cis–trans backisomerization, and finally heated to different LC phases for thermal annealing. Using infrared dichroism to monitor the change in orientation degree, the results of this study have unveiled complex and different orientational behavior and coupling effects for the homopolymer of poly{6-[4-(4-methoxyphenylazo)phenoxy]hexyl methacrylate} (PAzMA) and the diblock copolymer of PAzMA-block- poly{6-[4-(4-cyanophenyl) phenoxy]hexyl methacrylate} (PAzMA-PBiPh). Most notably for the homopolymer, the stretching-induced orientation exerts no memory effect on the photoinduced reorientation, the direction of which is determined by the polarization of the visible light regardless of the mechanically induced orientation direction in the stretched film. Moreover, subsequent thermal annealing in the nematic phase leads to parallel orientation independently of the initial mechanically or photoinduced orientation direction. By contrast, the diblock copolymer displays a strong orientation memory effect. Regardless of the condition used, either for photoinduced reorientation or thermal annealing in the liquid crystalline phase, only the initial stretching-induced perpendicular orientation of azobenzene mesogens can be recovered. The reported findings provide new insight into the different orientation mechanisms, and help understand the important issue of orientation induction and control in azobenzene-containing SCLCPs. The second study presented in this thesis (Chapter 2) deals with supramolecular side-chain liquid crystalline polymers (S-SCLCPs), in which side-group mesogens are linked to the chain backbone through non-covalent interactions such as hydrogen bonding. Little is known about the mechanically induced orientation of mesogens in S-SCLCPs. In contrast to covalent SCLCPs, free-standing, solution-cast thin films of a S-SCLCP, built up with 4-(4’-heptylphenyl) azophenol (7PAP) H-bonded to poly(4-vinyl pyridine) (P4VP), display excellent stretchability. Taking advantage of this finding, we investigated the stretching-induced orientation and the viscoelastic behavior of this S-SCLCP, and the results revealed major differences between supramolecular and covalent SCLCPs. For covalent SCLCPs, the strong coupling between chain backbone and side-group mesogens means that the two constituents can mutually influence each other; the lack of chain entanglements is a manifestation of this coupling effect, which accounts for the difficulty in obtaining freestanding and mechanically stretchable films. Upon elongation of a covalent SCLCP film cast on a supporting film, the mechanical force acts on the coupled polymer backbone and mesogenic side groups, and the latter orients cooperatively and efficiently (high orientation degree), which, in turn, imposes an anisotropic conformation of the chain backbone (low orientation degree). In the case of the S-SCLCP of P4VP-7PAP, the coupling between the side-group mesogens and the chain backbone is much weakened owing to the dynamic dissociation/association of the H-bonds linking the two constituents. The consequence of this decoupling is readily observable from the viscoelastic behavior. The average molecular weight between entanglements is basically unchanged in both the smectic and isotropic phase, and is similar to non-liquid crystalline samples. As a result, the S-SCLCP can easily form freestanding and stretchable films. Furthermore, the stretching induced orientation behavior of P4VP-7PAP is totally different. Stretching in the smectic phase results in a very low degree of orientation of the side-group mesogens even at a large strain (500%), while the orientation of the main chain backbone develops steadily with increasing the strain, much the same way as amorphous polymers. The results imply that upon stretching, the mechanical force is mostly coupled to the polymer backbone and leads to its orientation, while the main chain orientation exerts little effect on orienting the H-bonded mesogenic side groups. This surprising finding is explained by the likelihood that during stretching in the smectic phase (at relatively higher temperatures) the dynamic dissociation of the H-bonds allow the side-group mesogens to be decoupled from the chain backbone and relax quickly. In the third project (Chapter 3), we investigated the shape memory properties of a S-SCLCP prepared by tethering two azobenzene mesogens, namely, 7PAP and 4-(4'-ethoxyphenyl) azophenol (2OPAP), to P4VP through H-bonding. The results revealed that, despite the dynamic nature of the linking H-bonds, the supramolecular SCLCP behaves similarly to covalent SCLCP by exhibiting a two-stage thermally triggered shape recovery process governed by both the glass transition and the LC-isotropic phase transition. The ability for the supramolecular SCLCP to store part of the strain energy above T[subscript g] in the LC phase enables the triple-shape memory property. Moreover, thanks to the azobenzene mesogens used, which can undergo trans-cis photoisomerization, exposure the supramolecular SCLCP to UV light can also trigger the shape recovery process, thus enabling the remote activation and the spatiotemporal control of the shape memory. By measuring the generated contractile force and its removal upon turning on and off the UV light, respectively, on an elongated film under constant strain, it seems that the optically triggered shape recovery stems from a combination of a photothermal effect and an effect of photoplasticization or of an order-disorder phase transition resulting from the trans-cis photoisomerization of azobenzene mesogens.
Resumo:
Centrifugal pumps are vastly used in many industrial applications. Knowledge of how these components behave in several circumstances is crucial for the development of more efficient and, therefore, less expensive pumping installations. The combination of multiple impellers, vaned diffusers and a volute might introduce several complex flow characteristics that largely deviate from regular inviscid pump flow theory. Computational Fluid Dynamics can be very helpful to extract information about which physical phenomena are involved in such flows. In this sense, this work performs a numerical study of the flow in a two-stage centrifugal pump (Imbil ITAP 65-330/2) with a vaned diffuser and a volute. The flow in the pump is modeled using the software Ansys CFX, by means of a multi-block, transient rotor-stator technique, with structured grids for all pump parts. The simulations were performed using water and a mixture of water and glycerin as work fluids. Several viscosities were considered, in a range between 87 and 720 cP. Comparisons between experimental data obtained by Amaral (2007) and numerical head curves showed a good agreement, with an average deviation of 6.8% for water. The behavior of velocity, pressure and turbulence kinetic energy fields was evaluated for several operational conditions. In general, the results obtained by this work achieved the proposed goals and are a significant contribution to the understanding of the flow studied.
Resumo:
An indirect genetic algorithm for the non-unicost set covering problem is presented. The algorithm is a two-stage meta-heuristic, which in the past was successfully applied to similar multiple-choice optimisation problems. The two stages of the algorithm are an ‘indirect’ genetic algorithm and a decoder routine. First, the solutions to the problem are encoded as permutations of the rows to be covered, which are subsequently ordered by the genetic algorithm. Fitness assignment is handled by the decoder, which transforms the permutations into actual solutions to the set covering problem. This is done by exploiting both problem structure and problem specific information. However, flexibility is retained by a self-adjusting element within the decoder, which allows adjustments to both the data and to stages within the search process. Computational results are presented.
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Paula Frassinetti para obtenção de grau de Mestre em Educação Pré-Escolar e Ensino do 1.º Ciclo do Ensino Básico
Resumo:
This dissertation mainly focuses on coordinated pricing and inventory management problems, where the related background is provided in Chapter 1. Several periodic-review models are then discussed in Chapters 2,3,4 and 5, respectively. Chapter 2 analyzes a deterministic single-product model, where a price adjustment cost incurs if the current selling price is changed from the previous period. We develop exact algorithms for the problem under different conditions and find out that computation complexity varies significantly associated with the cost structure. %Moreover, our numerical study indicates that dynamic pricing strategies may outperform static pricing strategies even when price adjustment cost accounts for a significant portion of the total profit. Chapter 3 develops a single-product model in which demand of a period depends not only on the current selling price but also on past prices through the so-called reference price. Strongly polynomial time algorithms are designed for the case without no fixed ordering cost, and a heuristic is proposed for the general case together with an error bound estimation. Moreover, our illustrates through numerical studies that incorporating reference price effect into coordinated pricing and inventory models can have a significant impact on firms' profits. Chapter 4 discusses the stochastic version of the model in Chapter 3 when customers are loss averse. It extends the associated results developed in literature and proves that the reference price dependent base-stock policy is proved to be optimal under a certain conditions. Instead of dealing with specific problems, Chapter 5 establishes the preservation of supermodularity in a class of optimization problems. This property and its extensions include several existing results in the literature as special cases, and provide powerful tools as we illustrate their applications to several operations problems: the stochastic two-product model with cross-price effects, the two-stage inventory control model, and the self-financing model.
Enzymatic hydrolysis and fermentation of ultradispersed wood particles after ultrasonic pretreatment
Resumo:
Background: A study of the correlation between the particle size of lignocellulosic substrates and ultrasound pretreatment on the efficiency of further enzymatic hydrolysis and fermentation to ethanol. Results: Themaximumconcentrations of glucose and, to a lesser extent, di- and trisaccharideswere obtained in a series of experiments with 48-h enzymatic hydrolysis of pine rawmaterials ground at 380–400 rpm for 30min. The highest glucose yield was observed at the end of the hydrolysis with a cellulase dosage of 10 mg of protein (204 ± 21 units CMCase per g of sawdust). The greatest enzymatic hydrolysis efficiency was observed in a sample that combined two-stage grinding at 400 rpm with ultrasonic treatment for 5–10 min at a power of 10 W per kg of sawdust. The glucose yield in this case (35.5 g glucose l−1) increased twofold compared to ground substrate without further preparation. Conclusions: Using a mechanical two-stage grinding of lignocellulosic raw materials with ultrasonication increases the efficiency of subsequent enzymatic hydrolysis and fermentation.
Resumo:
The size of online image datasets is constantly increasing. Considering an image dataset with millions of images, image retrieval becomes a seemingly intractable problem for exhaustive similarity search algorithms. Hashing methods, which encodes high-dimensional descriptors into compact binary strings, have become very popular because of their high efficiency in search and storage capacity. In the first part, we propose a multimodal retrieval method based on latent feature models. The procedure consists of a nonparametric Bayesian framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. In the second part, we focus on supervised hashing with kernels. We describe a flexible hashing procedure that treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present a scalable inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed computing. In the last part, we define an incremental hashing strategy for dynamic databases where new images are added to the databases frequently. The method is based on a two-stage classification framework using binary and multi-class SVMs. The proposed method also enforces balance in binary codes by an imbalance penalty to obtain higher quality binary codes. We learn hash functions by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from an unseen class, we propose an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate that the incremental strategy is capable of efficiently updating hash functions to the same retrieval performance as hashing from scratch.
Resumo:
Background: The aim of this study was to assess the quality of rapid HIV testing in South Africa. Method: A two-stage sampling procedure was used to select HCT sites in eight provinces of South Africa. The study employed both semi-structured interviews with HIV testers and observation of testing sessions as a means of data collection. In total, 63 HCT sites (one HIV tester per site) were included in the survey assessing qualification, training, testing practices and attitudes towards rapid tests. Quantitative data was analysed using descriptive statistics and qualitative data was content analysed. Results: Of the 63 HIV testers, 20.6% had a nursing qualification, 14.3% were professional counsellors, 58.7% were lay HIV counsellors and testers and 6.4% were from other professions. Most HIV testers (87.3%) had had a formal training in testing, which ranged between 10-14 days, while 6 (9.5%) had none. Findings revealed sub-standard practices in relation to testing. These were mainly related to non-adherence to testing algorithms, poor external quality control practices, poor handling and communication of discordant results. Conclusion: Quality of HIV rapid testing may be highly compromised through poor adherence to guidelines as observed in our study.
Resumo:
Many different photovoltaic technologies are being developed for large-scale solar energy conversion such as crystalline silicon solar cells, thin film solar cells based on a-Si:H, CIGS and CdTe. As the demand for photovoltaics rapidly increases, there is a pressing need for the identification of new visible light absorbing materials for thin-film solar cells. Nowadays there are a wide range of earth-abundant absorber materials that have been studied around the world by different research groups. The current thin film photovoltaic market is dominated by technologies based on the use of CdTe and CIGS, these solar cells have been made with laboratory efficiencies up to 19.6% and 20.8% respectively. However, the scarcity and high cost of In, Ga and Te can limit in the long-term the production in large scale of photovoltaic devices. On the other hand, quaternary CZTSSe which contain abundant and inexpensive elements like Cu, Zn, Sn, S and Se has been a potential candidate for PV technology having solar cell efficiency up to 12.6%, however, there are still some challenges that must be accomplished for this material. Therefore, it is evident the need to find the alternative inexpensive and earth abundant materials for thin film solar cells. One of these alternatives is copper antimony sulfide(CuSbS2) which contains abundant and non-toxic elements which has a direct optical band gap of 1.5 eV, the optimum value for an absorber material in solar cells, suggesting this material as one among the new photovoltaic materials. This thesis work focuses on the preparation and characterization of In6Se7, CuSbS2 and CuSb(S1-xSex)2 thin films for their application as absorber material in photovoltaic structures using two stage process by the combination of chemical bath deposition and thermal evaporation.
Resumo:
Nonpoint sources (NPS) pollution from agriculture is the leading source of water quality impairment in U.S. rivers and streams, and a major contributor to lakes, wetlands, estuaries and coastal waters (U.S. EPA 2016). Using data from a survey of farmers in Maryland, this dissertation examines the effects of a cost sharing policy designed to encourage adoption of conservation practices that reduce NPS pollution in the Chesapeake Bay watershed. This watershed is the site of the largest Total Maximum Daily Load (TMDL) implemented to date, making it an important setting in the U.S. for water quality policy. I study two main questions related to the reduction of NPS pollution from agriculture. First, I examine the issue of additionality of cost sharing payments by estimating the direct effect of cover crop cost sharing on the acres of cover crops, and the indirect effect of cover crop cost sharing on the acres of two other practices: conservation tillage and contour/strip cropping. A two-stage simultaneous equation approach is used to correct for voluntary self-selection into cost sharing programs and account for substitution effects among conservation practices. Quasi-random Halton sequences are employed to solve the system of equations for conservation practice acreage and to minimize the computational burden involved. By considering patterns of agronomic complementarity or substitution among conservation practices (Blum et al., 1997; USDA SARE, 2012), this analysis estimates water quality impacts of the crowding-in or crowding-out of private investment in conservation due to public incentive payments. Second, I connect the econometric behavioral results with model parameters from the EPA’s Chesapeake Bay Program to conduct a policy simulation on water quality effects. I expand the econometric model to also consider the potential loss of vegetative cover due to cropland incentive payments, or slippage (Lichtenberg and Smith-Ramirez, 2011). Econometric results are linked with the Chesapeake Bay Program watershed model to estimate the change in abatement levels and costs for nitrogen, phosphorus and sediment under various behavioral scenarios. Finally, I use inverse sampling weights to derive statewide abatement quantities and costs for each of these pollutants, comparing these with TMDL targets for agriculture in Maryland.