940 resultados para Truck trailers
Resumo:
Laurentide glaciation during the early Pleistocene (~970 ka) dammed the southeast-flowing West Branch of the Susquehanna River (WBSR), scouring bedrock and creating 100-km-long glacial Lake Lesley near the Great Bend at Muncy, Pennsylvania (Ramage et al., 1998). Local drill logs and well data indicate that subsequent paleo-outwash floods and modern fluvial processes have deposited as much as 30 meters of alluvium in this area, but little is known about the valley fill architecture and the bedrock-alluvium interface. By gaining a greater understanding of the bedrock-alluvium interface the project will not only supplement existing depth to bedrock information, but also provide information pertinent to the evolution of the Muncy Valley landscape. This project determined if variations in the thickness of the valley fill were detectable using micro-gravity techniques to map the bedrock-alluvium interface. The gravity method was deemed appropriate due to scale of the study area (~30 km2), ease of operation by a single person, and the available geophysical equipment. A LaCoste and Romberg Gravitron unit was used to collect gravitational field readings at 49 locations over 5 transects across the Muncy Creek and Susquehanna River valleys (approximately 30 km2), with at least two gravity base stations per transect. Precise latitude, longitude and ground surface elevation at each location were measured using an OPUS corrected Trimble RTK-GPS unit. Base stations were chosen based on ease of access due to the necessity of repeat measurements. Gravity measurement locations were selected and marked to provide easy access and repeat measurements. The gravimeter was returned to a base station within every two hours and a looping procedure was used to determine drift and maximize confidence in the gravity measurements. A two-minute calibration reading at each station was used to minimize any tares in the data. The Gravitron digitally recorded finite impulse response filtered gravity measurements every 20 seconds at each station. A measurement period of 15 minutes was used for each base station occupation and a minimum of 5 minutes at all other locations. Longer or multiple measurements were utilized at some sites if drift or other externalities (i.e. train or truck traffic) were effecting readings. Average, median, standard deviation and 95% confidence interval were calculated for each station. Tidal, drift, latitude, free-air, Bouguer and terrain corrections were then applied. The results show that the gravitational field decreases as alluvium thickness increases across the axes of the Susquehanna River and Muncy Creek valleys. However, the location of the gravity low does not correspond with the present-day location of the West Branch of the Susquehanna River (WBSR), suggesting that the WBSR may have been constrained along Bald Eagle Mountain by a glacial lobe originating from the Muncy Creek Valley to the northeast. Using a 3-D inversion model, the topography of the bedrock-alluvium interface was determined over the extent of the study area using a density contrast of -0.8 g/cm3. Our results are consistent with the bedrock geometry of the area, and provide a low-cost, non-invasive and efficient method for exploring the subsurface and for supplementing existing well data.
Resumo:
The development of the Marcellus Shale gas play in Pennsylvania and the northeastern United States has resulted in significant amounts of water and wastes transported by truck over roadways. This study used geographic information systems (GIS) to quantify truck travel distances via both the preferred routes (minimum distance while also favoring higher-order roads) as well as, where available, the likely actual distances for freshwater and waste transport between pertinent locations (e. g., gas wells, treatment facilities, freshwater sources). Results show that truck travel distances in the Susquehanna River Basin are greater than those used in prior life-cycle assessments of tight shale gas. When compared to likely actual transport distances, if policies were instituted to constrain truck travel to the closest destination and higher-order roads, transport mileage reductions of 40-80% could be realized. Using reasonable assumptions of current practices, greenhouse gas (GHG) emissions associated with water and waste hauling were calculated to be 70-157 MT CO2 eq per gas well. Furthermore, empty so-called backhaul trips, such as to freshwater withdrawal sites or returning from deep well injection sites, were found to increase emissions by an additional 30%, underscoring the importance of including return trips in the analysis. The results should inform future life-cycle assessments of tight shale gases in managed watersheds and help local and regional governments plan for impacts of transportation on local infrastructure. (C) 2013 American Society of Civil Engineers.
Resumo:
As transportation infrastructure across the globe approaches the end of its service life, new innovative materials and applications are needed to sustainably repair and prevent damage to these structures. Bridge structures in the United States in particular are at risk as a large percentage will be reaching their design service lives in the coming decades. Superstructure deterioration occurs due to a variety of factors, but a major contributor comes in the form of deteriorating concrete bridge decks. Within a concrete bridge deck system, deterioration mechanisms can include spalling, delaminations, scaling from unsuitable material selection, freeze-thaw damage, and corrosion of reinforcing steel due to infiltration of chloride ions and moisture. This thesis presents findings pertaining to the feasibility of using UHPC as a thin-bonded overlay on concrete bridge decks, specifically in precast bridge deck applications where construction duration and traffic interruption can be minimized, as well as in cast-in-place field applications. UHPC has several properties that make it a desirable material for this application. These properties include post-cracking tensile capacity, high compressive strength, high resistance to environmental and chemical attack, negligible permeability, negligible dry shrinkage when thermally cured, and the ability to self consolidate. The compatibility of this bridge deck overlay system was determined to minimize overlay thickness and dead load without sacrificing bond integrity or lose of protective capabilities. A parametric analysis was conducted using a 3D finite element model of a simply supported bridge under HS-20 truck and overload. Experimental tests were conducted to determine the net effect of UHPC volume change due to restrained shrinkage and tensile creep relaxation. The combined effects from numerical models and test results were then considered in determining the optimum overlay thickness for cast-in-place and precast applications.
Resumo:
Moisture induced distresses have been the prevalent distress type affecting the deterioration of both asphalt and concrete pavement sections. While various surface techniques have been employed over the years to minimize the ingress of moisture into the pavement structural sections, subsurface drainage components like open-graded base courses remain the best alternative in minimizing the time the pavement structural sections are exposed to saturated conditions. This research therefore focuses on assessing the performance and cost-effectiveness of pavement sections containing both treated and untreated open-graded aggregate base materials. Three common roadway aggregates comprising of two virgin aggregates and one recycled aggregate were investigated using four open-ended gradations and two binder types. Laboratory tests were conducted to determine the hydraulic, mechanical and durability characteristics of treated and untreated open-graded mixes made from these three aggregate types. Results of the experimental program show that for the same gradation and mix design types, limestone samples have the greatest drainage capacity, stability to traffic loads and resistance to degradation from environmental conditions like freeze-thaw. However, depending on the gradation and mix design used, all three aggregate types namely limestone, natural gravel and recycled concrete can meet the minimum coefficient of hydraulic conductivity required for good drainage in most pavements. Tests results for both asphalt and cement treated open-graded samples indicate that a percent air void content within the range of 15-25 will produce a treated open-graded base course with sufficient drainage capacity and also long term stability under both traffic and environmental loads. Using the new Mechanistic and Empirical Design Guide software, computer simulations of pavement performance were conducted on pavement sections containing these open-graded base aggregate base materials to determine how the MEPDG predicted pavement performance is sensitive to drainage. Using three truck traffic levels and four climatic regions, results of the computer simulations indicate that the predicted performance was not sensitive to the drainage characteristics of the open-graded base course. Based on the result of the MEPDG predicted pavement performance, the cost-effectiveness of the pavement sections with open-graded base was computed on the assumption that the increase service life experienced by these sections was attributed to the positive effects of subsurface drainage. The two cost analyses used gave two contrasting results with the one indicating that the inclusion of open-graded base courses can lead to substantial savings.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
The purpose of this study is to design, develop and integrate a Compressed Natural Gas (CNG) tank that will have a conformable shape for efficient storage in a light-duty pick-up truck. The CNG tank will be a simple rectangular box geometry to demonstrate capability of non-cylindrical shapes. Using CAD drawings of the truck, a conformable tank will be designed to fit under the pick-up bed. The intent of the non-cylindrical CNG tank is to demonstrate improvement in size over the current solution, which is a large cylinder in the box of a pick-up truck. The geometry of the tank’s features is critical to its size and strength. The optimized tank design will be simulated with Finite Element Analysis (FEA) to determine critical stress regions, and appropriate design changes will be made to reduce stress concentration. Following the American National Standard Institute (ANSI) guide, different aluminum alloys will be optimized to obtain the best possible result for the CNG tank.
Resumo:
Der Beitrag beschreibt ein optimiertes Kennzahlensystem zur Bewertung von RFID-Systemen beim Einsatz in logistischen Prozessen. Das Verfahren bildet die Verhaltensmerkmale eines RFID-Systems in unterschiedlichen Kennzahlen ab. Die neu definierte Kommunikationsbelastbarkeit ermöglicht erstmals eine anwendungsbezogene Bewertung verschiedener RFID-Systeme auf Basis einer Kennzahl. Am Beispiel der Identifikation eines Regallagerplatzes wird die Aussagekraft des Kennzahlensystems dargestellt.
Resumo:
Flurförderzeuge sind aufgrund ihrer Einsatzbedingungen und konstruktiven Merkmale besonderen Beanspruchungen ausgesetzt. Diese elektrischen, mechanischen und thermischen Beanspruchungen unterscheiden sich teilweise deutlich von denen anderer Fahrzeuge wie Personenwagen oder mobilen Baumaschinen. Um Auslegungs- und Dimensionierungsrichtlinien für die im Flurförderzeug verbauten elektronischen Komponenten zu erarbeiten, wurden an einem Schubmaststapler die auf ausgewählte Komponenten einwirkenden Beanspruchungen aufgezeichnet und umfangreich ausgewertet. In verschiedenen Prüfstandsuntersuchungen wurden die angenommenen Beanspruchungen unter Laborbedingungen nachgestellt, um das Verhalten der Elektronikkomponenten näher zu betrachten und Ausfallcharakteristiken, wie beispielsweise die Zusammenhänge zwischen Belastungshöhe und Belastungshäufigkeit bis zum Ausfall, abzuleiten.
Resumo:
Dieser Beitrag beschreibt die Integration von laufzeitmessenden 3D Kamerasystemen in die Gabelzinkenspitzen eines Flurförderzeugs. Mit Hilfe der integrierten Kameras und deren ausgewerteter Aufnahmen wurde ein Assistenzsystem für die Handhabung von Ladungsträgern realisiert, das dem Fahrer des Flurförderzeugs Verfahrempfehlungen für die Optimierung der Relativposition zwischen Gabelzinken und Ladungsträger bzw. Lagerplatz ausgibt. Neben der Vorstellung der verwendeten Kamera-Hardware und der Integration am Fahrzeug wird auch der Ablauf der Bildverarbeitung beschrieben.
Resumo:
In einem Gemeinschaftsprojekt der Technischen Universität München und der Helmut-Schmidt-Universität Hamburg werden die vertikaldynamischen Eigenschaften der bei Gabelstaplern verbreiteten Superelastik-Reifen (SE-Reifen) experimentell untersucht und das dynamische Verhalten der Reifen in ein numerisches Modell überführt. Der Beitrag geht auf die hierzu aufgebauten Versuchsstände, die Ermittlung der Kennwerte und den Aufbau des numerischen Reifenmodells ein.
Resumo:
Für den innerbetrieblichen Transport und besonders für die Materialversorgung in der Produktion werden zunehmend Routenzüge eingesetzt, die aus einem Schleppfahrzeug und bis zu fünf Anhängern bestehen. Um gute Manövrierbarkeit und einen geringen Platzbedarf zu gewährleisten, sollten Routenzuganhänger möglichst spurtreu sein. In diesem Beitrag wird die Spurtreue exemplarisch für zwei am Markt verfügbare Anhänger für Routenzüge mit zwei ungelenkten und vier gelenkten Rädern untersucht. Hierfür wird zunächst ein Gütekriterium definiert, das die maximale Abweichung von der Spurtreue quantitativ erfasst. Außerdem werden Testszenarien vorgeschlagen, um die verschiedenen Fahrwerks- und Lenkkonzepte vergleichen zu können. Mit Hilfe eines entwickelten analytischen Modells werden die Abweichungen in der Spurtreue bei stationärer Kreisfahrt für die zwei gewählten Konzepte berechnet und dargestellt. Zusätzlich wird eine Mehrkörper-Simulation, die eine tiefere physikalische Modellierung und die Untersuchung komplexerer Fahrmanöver erlaubt, durchgeführt und mit den analytischen Ergebnissen verglichen. Es kann gezeigt werden, dass neben der Lenkkinematik weitere Parameter wie das Schräglaufverhalten der Reifen Einfluss auf die Spurtreue haben.
Resumo:
PRINCIPALS Over a million people worldwide die each year from road traffic injuries and more than 10 million sustain permanent disabilities. Many of these victims are pedestrians. The present retrospective study analyzes the severity and mortality of injuries suffered by adult pedestrians, depending on whether they used a zebra crosswalk. METHODS Our retrospective data analysis covered adult patients admitted to our emergency department (ED) between 1 January 2000 and 31 December 2012 after being hit by a vehicle while crossing the road as a pedestrian. Patients were identified by using a string term. Medical, police and ambulance records were reviewed for data extraction. RESULTS A total of 347 patients were eligible for study inclusion. Two hundred and three (203; 58.5%) patients were on a zebra crosswalk and 144 (41.5%) were not. The mean ISS (injury Severity Score) was 12.1 (SD 14.7, range 1-75). The vehicles were faster in non-zebra crosswalk accidents (47.7 km/n, versus 41.4 km/h, p<0.027). The mean ISS score was higher in patients with non-zebra crosswalk accidents; 14.4 (SD 16.5, range 1-75) versus 10.5 (SD13.14, range 1-75) (p<0.019). Zebra crosswalk accidents were associated with less risk of severe injury (OR 0.61, 95% CI 0.38-0.98, p<0.042). Accidents involving a truck were associated with increased risk of severe injury (OR 3.53, 95%CI 1.21-10.26, p<0.02). CONCLUSION Accidents on zebra crosswalks are more common than those not on zebra crosswalks. The injury severity of non-zebra crosswalk accidents is significantly higher than in patients with zebra crosswalk accidents. Accidents involving large vehicles are associated with increased risk of severe injury. Further prospective studies are needed, with detailed assessment of motor vehicle types and speed.
Resumo:
Allegorische Darstellung zum Beginn des Dreißigjährigen Krieges
Resumo:
The University Compost Facility, 52274 260th St., Ames, Iowa has completed three full years of operation. The facility is managed by the ISU Research Farms and has a separate revolving account that receives fees and sales, and pays expenses. The facility is designed to be self-supporting, i.e. not receive allocations for its operations. The facility consists of seven, 80 × 140 ft hoop barns and a new 55 × 120 ft hoop barn, all with paved floors. The facility also has a Mettler-Toledo electronic scale with a 10 ft × 70 ft platform to weigh all materials. Key machinery is 1) compost turner, a used pull-type Aeromaster PT-170, 14 ft wide made by Midwest Biosystems, Tampico, IL; 2) a converted dump truck trailer used to construct windrows and haul material; 3) telehandler, Caterpillar TH407 with cab and 2.75 cubic yard bucket; and 4) tractor, John Deere 7520 (125 hp) with IVT (Infinite Variable Transmission) and front-wheel assist used to pull the turner and dump trailer.
Resumo:
Geographic distance is a standard proxy for transport costs under the simple assumption that freight fees increase monotonically over space. Using the Japanese Census of Logistics, this paper examines the extent to which transport distance and time affect freight costs across shipping modes, commodity groups, and prefecture pairs. The results show substantial heterogeneity in transport costs and time across shipping modes. Consistent with an iceberg formulation of transport costs, distance has a significantly positive effect on freight costs by air transportation. However, I find the puzzling results that business enterprises are likely to pay more for short-distance shipments by truck, ship, and railroad transportation. As a plausible explanation, I discuss aggregation bias arising from freight-specific premiums for timely, frequent, and small-batch shipments.