939 resultados para Tropical deforestation, simulation model.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: Laparoscopic training models are increasingly important in urology to allow trainees to improve their laparoscopic skills prior to going to the operating room. For a training model to be valid, it must correlate with performance in a real case. The model must also discriminate between experienced and inexperienced subjects. [See PDF for complete abstract]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A model of Drosophila circadian rhythm generation was developed to represent feedback loops based on transcriptional regulation of per, Clk (dclock), Pdp-1, and vri (vrille). The model postulates that histone acetylation kinetics make transcriptional activation a nonlinear function of [CLK]. Such a nonlinearity is essential to simulate robust circadian oscillations of transcription in our model and in previous models. Simulations suggest that two positive feedback loops involving Clk are not essential for oscillations, because oscillations of [PER] were preserved when Clk, vri, or Pdp-1 expression was fixed. However, eliminating positive feedback by fixing vri expression altered the oscillation period. Eliminating the negative feedback loop in which PER represses per expression abolished oscillations. Simulations of per or Clk null mutations, of per overexpression, and of vri, Clk, or Pdp-1 heterozygous null mutations altered model behavior in ways similar to experimental data. The model simulated a photic phase-response curve resembling experimental curves, and oscillations entrained to simulated light-dark cycles. Temperature compensation of oscillation period could be simulated if temperature elevation slowed PER nuclear entry or PER phosphorylation. The model makes experimental predictions, some of which could be tested in transgenic Drosophila.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 and ~0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the threedimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years ‘‘target’’ simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-tohigh latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied verywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained largescale observations of this field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigates a theoretical model where a longitudinal process, that is a stationary Markov-Chain, and a Weibull survival process share a bivariate random effect. Furthermore, a Quality-of-Life adjusted survival is calculated as the weighted sum of survival time. Theoretical values of population mean adjusted survival of the described model are computed numerically. The parameters of the bivariate random effect do significantly affect theoretical values of population mean. Maximum-Likelihood and Bayesian methods are applied on simulated data to estimate the model parameters. Based on the parameter estimates, predicated population mean adjusted survival can then be calculated numerically and compared with the theoretical values. Bayesian method and Maximum-Likelihood method provide parameter estimations and population mean prediction with comparable accuracy; however Bayesian method suffers from poor convergence due to autocorrelation and inter-variable correlation. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In regression analysis, covariate measurement error occurs in many applications. The error-prone covariates are often referred to as latent variables. In this proposed study, we extended the study of Chan et al. (2008) on recovering latent slope in a simple regression model to that in a multiple regression model. We presented an approach that applied the Monte Carlo method in the Bayesian framework to the parametric regression model with the measurement error in an explanatory variable. The proposed estimator applied the conditional expectation of latent slope given the observed outcome and surrogate variables in the multiple regression models. A simulation study was presented showing that the method produces estimator that is efficient in the multiple regression model, especially when the measurement error variance of surrogate variable is large.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Benguela Current, located off the west coast of southern Africa, is tied to a highly productive upwelling system**1. Over the past 12 million years, the current has cooled, and upwelling has intensified**2, 3, 4. These changes have been variously linked to atmospheric and oceanic changes associated with the glaciation of Antarctica and global cooling**5, the closure of the Central American Seaway**1, 6 or the further restriction of the Indonesian Seaway**3. The upwelling intensification also occurred during a period of substantial uplift of the African continent**7, 8. Here we use a coupled ocean-atmosphere general circulation model to test the effect of African uplift on Benguela upwelling. In our simulations, uplift in the East African Rift system and in southern and southwestern Africa induces an intensification of coastal low-level winds, which leads to increased oceanic upwelling of cool subsurface waters. We compare the effect of African uplift with the simulated impact of the Central American Seaway closure9, Indonesian Throughflow restriction10 and Antarctic glaciation**11, and find that African uplift has at least an equally strong influence as each of the three other factors. We therefore conclude that African uplift was an important factor in driving the cooling and strengthening of the Benguela Current and coastal upwelling during the late Miocene and Pliocene epochs.