970 resultados para Transport system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ROTEM(®) is considered a helpful point-of-care device to monitor blood coagulation. Centrally performed analysis is desirable but rapid transport of blood samples and real-time transmission of graphic results are an important prerequisite. The effect of sample transport through a pneumatic tube system on ROTEM(®) results is unknown. The aims of the present work were (i) to determine the influence of blood sample transport through a pneumatic tube system on ROTEM(®) parameters compared to manual transportation, and (ii) to verify whether graphic results can be transmitted on line via virtual network computing using local area network to the physician in charge of the patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an accelerated exclusion process (AEP), each particle can "hop" to its adjacent site if empty as well as "kick" the frontmost particle when joining a cluster of size ℓ⩽ℓ_{max}. With various choices of the interaction range, ℓ_{max}, we find that the steady state of AEP can be found in a homogeneous phase with augmented currents (AC) or a segregated phase with holes moving at unit velocity (UV). Here we present a detailed study on the emergence of the novel phases, from two perspectives: the AEP and a mass transport process (MTP). In the latter picture, the system in the UV phase is composed of a condensate in coexistence with a fluid, while the transition from AC to UV can be regarded as condensation. Using Monte Carlo simulations, exact results for special cases, and analytic methods in a mean field approach (within the MTP), we focus on steady state currents and cluster sizes. Excellent agreement between data and theory is found, providing an insightful picture for understanding this model system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural analyses of heterologously expressed mammalian membrane proteins remain a great challenge given that microgram to milligram amounts of correctly folded and highly purified proteins are required. Here, we present a novel method for the expression and affinity purification of recombinant mammalian and in particular human transport proteins in Xenopus laevis frog oocytes. The method was validated for four human and one murine transporter. Negative stain transmission electron microscopy (TEM) and single particle analysis (SPA) of two of these transporters, i.e., the potassium-chloride cotransporter 4 (KCC4) and the aquaporin-1 (AQP1) water channel, revealed the expected quaternary structures within homogeneous preparations, and thus correct protein folding and assembly. This is the first time a cation-chloride cotransporter (SLC12) family member is isolated, and its shape, dimensions, low-resolution structure and oligomeric state determined by TEM, i.e., by a direct method. Finally, we were able to grow 2D crystals of human AQP1. The ability of AQP1 to crystallize was a strong indicator for the structural integrity of the purified recombinant protein. This approach will open the way for the structure determination of many human membrane transporters taking full advantage of the Xenopus laevis oocyte expression system that generally yields robust functional expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C. dissolved inorganic C and SO(4) concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of clay surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of the Marcellus Shale gas play in Pennsylvania and the northeastern United States has resulted in significant amounts of water and wastes transported by truck over roadways. This study used geographic information systems (GIS) to quantify truck travel distances via both the preferred routes (minimum distance while also favoring higher-order roads) as well as, where available, the likely actual distances for freshwater and waste transport between pertinent locations (e. g., gas wells, treatment facilities, freshwater sources). Results show that truck travel distances in the Susquehanna River Basin are greater than those used in prior life-cycle assessments of tight shale gas. When compared to likely actual transport distances, if policies were instituted to constrain truck travel to the closest destination and higher-order roads, transport mileage reductions of 40-80% could be realized. Using reasonable assumptions of current practices, greenhouse gas (GHG) emissions associated with water and waste hauling were calculated to be 70-157 MT CO2 eq per gas well. Furthermore, empty so-called backhaul trips, such as to freshwater withdrawal sites or returning from deep well injection sites, were found to increase emissions by an additional 30%, underscoring the importance of including return trips in the analysis. The results should inform future life-cycle assessments of tight shale gases in managed watersheds and help local and regional governments plan for impacts of transportation on local infrastructure. (C) 2013 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creatine kinase catalyses the reversible transphosphorylation of creatine by ATP. In the cell, creatine kinase isoenzymes are specifically localized at strategic sites of ATP consumption to efficiently regenerate ATP in situ via phosphocreatine or at sites of ATP generation to build-up a phosphocreatine pool. Accordingly, the creatine kinase/phosphocreatine system plays a key role in cellular energy buffering and energy transport, particularly in cells with high and fluctuating energy requirements like neurons. Creatine kinases are expressed in the adult and developing human brain and spinal cord, suggesting that the creatine kinase/phosphocreatine system plays a significant role in the central nervous system. Functional impairment of this system leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. Exogenous creatine supplementation has been shown to reduce neuronal cell loss in experimental paradigms of acute and chronic neurological diseases. In line with these findings, first clinical trials have shown beneficial effects of therapeutic creatine supplementation. Furthermore, creatine was reported to promote differentiation of neuronal precursor cells that might be of importance for improving neuronal cell replacement strategies. Based on these observations there is growing interest on the effects and functions of this compound in the central nervous system. This review gives a short excursion into the basics of the creatine kinase/phosphocreatine system and aims at summarizing findings and concepts on the role of creatine kinase and creatine in the central nervous system with special emphasis on pathological conditions and the positive effects of creatine supplementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenylketonuria, an autosomal recessive Mendelian disorder, is one of the most common inborn errors of metabolism. Although currently treated by diet, many suboptimal outcomes occur for patients. Neuropathological outcomes include cognitive loss, white matter abnormalities, and hypo- or demyelination, resulting from high concentrations and/or fluctuating levels of phenylalanine. High phenylalanine can also result in competitive exclusion of other large neutral amino acids from the brain, including tyrosine and tryptophan (essential precursors of dopamine and serotonin). This competition occurs at the blood brain barrier, where the L-type amino acid transporter, LAT1, selectively facilitates entry of large neutral amino acids. The hypothesis of these studies is that certain non-physiological amino acids (NPAA; DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), α-aminoisobutyrate (AIB), and α-methyl-aminoisobutyrate (MAIB)) would competitively inhibit LAT1 transport of phenylalanine (Phe) at the blood-brain barrier interface. To test this hypothesis, Pah-/- mice (n=5, mixed gender; Pah+/-(n=5) as controls) were fed either 5% NL, 0.5% NB, 5% AIB or 3% MAIB (w/w 18% protein mouse chow) for 3 weeks. Outcome measurements included food intake, body weight, brain LNAAs, and brain monoamines measured via LCMS/MS or HPLC. Brain Phe values at sacrifice were significantly reduced for NL, NB, and MAIB, verifying the hypothesis that these NPAAs could inhibit Phe trafficking into the brain. However, concomitant reductions in tyrosine and methionine occurred at the concentrations employed. Blood Phe levels were not altered indicating no effect of NPAA competitors in the gut. Brain NL and NB levels, measured with HPLC, verified both uptake and transport of NPAAs. Although believed predominantly unmetabolized, NL feeding significantly increased blood urea nitrogen. Pah-/-disturbances of monoamine metabolism were exacerbated by NPAA intervention, primarily with NB (the prototypical LAT inhibitor). To achieve the overarching goal of using NPAAs to stabilize Phe transport levels into the brain, a specific Phe-reducing combination and concentration of NPAAs must be found. Our studies represent the first in vivo use of NL, NB and MAIB in Pah-/- mice, and provide proof-of-principle for further characterization of these LAT inhibitors. Our data is the first to document an effect of MAIB, a specific system A transport inhibitor, on large neutral amino acid transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auxin is a key regulator in plant growth and development. This dissertation examines the role of auxin and polar auxin transport in woody growth and development. Strategies of promoter reporter system, microarray expression analysis, transgenic modification, physiological assays, anatomical analysis, and histochemical/biochemical assays were employed to improve our understanding of auxin study in Populus. The results demonstrate various aspects of auxin regulation on shoot growth, root development, wood formation, and gravitropism in woody tissues. We describe the behavior of the DR5 reporter system for measuring auxin concentrations and response in stably transformed Populus trees. Our study shows that DR5 reporter system can be efficiently used in Populus to study auxin biology at a cellular resolution. We investigated the global gene expression in responding to auxin in Populus root. The results revealed groups of IBA up- and down- regulated genes involved in various biological processes including cell wall modification, root growth and lateral root formation, transporter activity and hormone crosstalk. We also verify two of the identified genes' function by transgenic modification in Populus, which encode auxin efflux carrier PtPIN9 and transcription factor PtERF72. We investigated the role of PtPIN9 in woody growth and development, especially in wood formation and gravitropic response in woody stem. We found that overexpressing PtPIN9 enhanced several growth parameters while suppression of PtPIN9 has inhibited tension wood formation. Our results show that PIN9 and other members from PIN family could be possible useful tools for increasing biomass productivity, wood quality, or in modifying plant form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this thesis had two objectives. The first objective was to develop a physically based computational model that could be used to predict the electronic conductivity, Seebeck coefficient, and thermal conductivity of Pb1-xSnxTe alloys over the 400 K to 700 K temperature as a function of Sn content and doping level. The second objective was to determine how the secondary phase inclusions observed in Pb1-xSnxTe alloys made by consolidating mechanically alloyed elemental powders impact the ability of the material to harvest waste heat and generate electricity in the 400 K to 700 K temperature range. The motivation for this work was that though the promise of this alloy as an unusually efficient thermoelectric power generator material in the 400 K to 700 K range had been demonstrated in the literature, methods to reproducibly control and subsequently optimize the materials thermoelectric figure of merit remain elusive. Mechanical alloying, though not typically used to fabricate these alloys, is a potential method for cost-effectively engineering these properties. Given that there are deviations from crystalline perfection in mechanically alloyed material such as secondary phase inclusions, the question arises as to whether these defects are detrimental to thermoelectric function or alternatively, whether they enhance thermoelectric function of the alloy. The hypothesis formed at the onset of this work was that the small secondary phase SnO2 inclusions observed to be present in the mechanically alloyed Pb1-xSnxTe would increase the thermoelectric figure of merit of the material over the temperature range of interest. It was proposed that the increase in the figure of merit would arise because the inclusions in the material would not reduce the electrical conductivity to as great an extent as the thermal conductivity. If this were to be true, then the experimentally measured electronic conductivity in mechanically alloyed Pb1-xSnxTe alloys that have these inclusions would not be less than that expected in alloys without these inclusions while the portion of the thermal conductivity that is not due to charge carriers (the lattice thermal conductivity) would be less than what would be expected from alloys that do not have these inclusions. Furthermore, it would be possible to approximate the observed changes in the electrical and thermal transport properties using existing physical models for the scattering of electrons and phonons by small inclusions. The approach taken to investigate this hypothesis was to first experimentally characterize the mobile carrier concentration at room temperature along with the extent and type of secondary phase inclusions present in a series of three mechanically alloyed Pb1-xSnxTe alloys with different Sn content. Second, the physically based computational model was developed. This model was used to determine what the electronic conductivity, Seebeck coefficient, total thermal conductivity, and the portion of the thermal conductivity not due to mobile charge carriers would be in these particular Pb1-xSnxTe alloys if there were to be no secondary phase inclusions. Third, the electronic conductivity, Seebeck coefficient and total thermal conductivity was experimentally measured for these three alloys with inclusions present at elevated temperatures. The model predictions for electrical conductivity and Seebeck coefficient were directly compared to the experimental elevated temperature electrical transport measurements. The computational model was then used to extract the lattice thermal conductivity from the experimentally measured total thermal conductivity. This lattice thermal conductivity was then compared to what would be expected from the alloys in the absence of secondary phase inclusions. Secondary phase inclusions were determined by X-ray diffraction analysis to be present in all three alloys to a varying extent. The inclusions were found not to significantly degrade electrical conductivity at temperatures above ~ 400 K in these alloys, though they do dramatically impact electronic mobility at room temperature. It is shown that, at temperatures above ~ 400 K, electrons are scattered predominantly by optical and acoustical phonons rather than by an alloy scattering mechanism or the inclusions. The experimental electrical conductivity and Seebeck coefficient data at elevated temperatures were found to be within ~ 10 % of what would be expected for material without inclusions. The inclusions were not found to reduce the lattice thermal conductivity at elevated temperatures. The experimentally measured thermal conductivity data was found to be consistent with the lattice thermal conductivity that would arise due to two scattering processes: Phonon phonon scattering (Umklapp scattering) and the scattering of phonons by the disorder induced by the formation of a PbTe-SnTe solid solution (alloy scattering). As opposed to the case in electrical transport, the alloy scattering mechanism in thermal transport is shown to be a significant contributor to the total thermal resistance. An estimation of the extent to which the mean free time between phonon scattering events would be reduced due to the presence of the inclusions is consistent with the above analysis of the experimental data. The first important result of this work was the development of an experimentally validated, physically based computational model that can be used to predict the electronic conductivity, Seebeck coefficient, and thermal conductivity of Pb1-xSnxTe alloys over the 400 K to 700 K temperature as a function of Sn content and doping level. This model will be critical in future work as a tool to first determine what the highest thermoelectric figure of merit one can expect from this alloy system at a given temperature and, second, as a tool to determine the optimum Sn content and doping level to achieve this figure of merit. The second important result of this work is the determination that the secondary phase inclusions that were observed to be present in the Pb1-xSnxTe made by mechanical alloying do not keep the material from having the same electrical and thermal transport that would be expected from “perfect" single crystal material at elevated temperatures. The analytical approach described in this work will be critical in future investigations to predict how changing the size, type, and volume fraction of secondary phase inclusions can be used to impact thermal and electrical transport in this materials system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare modeled oceanic carbon uptake in response to pulse CO2 emissions using a suite of global ocean models and Earth system models. In response to a CO2 pulse emission of 590 Pg C (corresponding to an instantaneous doubling of atmospheric CO2 from 278 to 556 ppm), the fraction of CO2 emitted that is absorbed by the ocean is: 37±8%, 56±10%, and 81±4% (model mean ±2σ ) in year 30, 100, and 1000 after the emission pulse, respectively. Modeled oceanic uptake of pulse CO2 on timescales from decades to about a century is strongly correlated with simulated present-day uptake of chlorofluorocarbons (CFCs) and CO2 across all models, while the amount of pulse CO2 absorbed by the ocean from a century to a millennium is strongly correlated with modeled radiocarbon in the deep Southern and Pacific Ocean. However, restricting the analysis to models that are capable of reproducing observations within uncertainty, the correlation is generally much weaker. The rates of surface-to-deep ocean transport are determined for individual models from the instantaneous doubling CO2 simulations, and they are used to calculate oceanic CO2 uptake in response to pulse CO2 emissions of different sizes pulses of 1000 and 5000 Pg C. These results are compared with simulated oceanic uptake of CO2 by a number of models simulations with the coupling of climate-ocean carbon cycle and without it. This comparison demonstrates that the impact of different ocean transport rates across models on oceanic uptake of anthropogenic CO2 is of similar magnitude as that of climate-carbon cycle feedbacks in a single model, emphasizing the important role of ocean transport in the uptake of anthropogenic CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intermodal rail/road freight transport constitutes an alternative to long-haul road transport for the distribution of large volumes of goods. The paper introduces the intermodal transportation problem for the tactical planning of mode and service selection. In rail mode, shippers either book train capacity on a per-unit basis or charter block trains completely. Road mode is used for short-distance haulage to intermodal terminals and for direct shipments to customers. We analyze the competition of road and intermodal transportation with regard to freight consolidation and service cost on a model basis. The approach is applied to a distribution system of an industrial company serving customers in eastern Europe. The case study investigates the impact of transport cost and consolidation on the optimal modal split.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of lashing means, for example load securing straps or nets, is often time-consuming, especially for courier, express and parcel-services (CEP) using a lot stops. The following article describes the development of an automated load securing system with a three-dimensional-preformed net. Mainly two components interact in this system. On the one hand, an anti-skid system is integrated, which uses the advantages of a low-friction surface for loading and the anti-slip properties of an adhesive coating for the transport. On the other hand, a flexibly adaptive net consisting of high-performance synthetic fibers and integrated shorteners lash different sized transport units. Especially, the automatic lashing should increase the acceptance of the drivers for the new load securing system.