956 resultados para Transport of heat


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Warming of the world's oceans is predicted to have many negative effects on organisms as they have optimal thermal windows. In coastal waters, however, both temperatures and pCO2 (pH) exhibit diel variations, and biological performances are likely to be modulated by physical and chemical environmental changes. To understand how coastal zooplankton respond to the combined impacts of heat shock and increased pCO2, the benthic copepod Tigriopus japonicus were treated at temperatures of 24, 28, 32 and 36 °C to simulate natural coastal temperatures experienced in warming events, when acclimated in the short term to either ambient (LC, 390 µatm) or future CO2 (HC, 1000 µatm). HC and heat shock did not induce any mortality of T. japonicus, though respiration increased up to 32 °C before being depressed at 36 °C. Feeding rate peaked at 28 °C but did not differ between CO2 treatments. Expression of heat shock proteins (hsps mRNA) was positively related to temperature, with no significant differences between the CO2 concentrations. Nauplii production was not affected across all treatments. Our results demonstrate that T. japonicus responds more sensitively to heat shocks rather than to seawater acidification; however, ocean acidification may synergistically act with ocean warming to mediate the energy allocation of copepods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questions relating to the transport of radioactive materials are very much an issue of current interest due to the increasing mobility of the materials involved in the nuclear fuel cycle, commitment to the environment, the safety and protection of persons and the corresponding regulatory legal framework. The radiological impact associated with this type of transport was assessed by means of a new data-processing tool that may be of use and serve as complementary documentation to that included in transport regulations. Thus, by determining the level of radiation at a distance of one metre from the transport vehicle and by selecting a route, the associated impacts will be obtained, such as the affected populations, the dose received by the most highly exposed individual, the overall radiological impact, the doses received by the population along the route and the possible detriment to their health. The most important conclusion is that the emissions of ionising radiation from the transport of radioactive material by road in Spain are not significant as regards the generation of adverse effects on human health, and that their radiological impact may be considered negligible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upwardpropagation of a premixed flame in averticaltubefilled with a very leanmixture is simulated numerically using a single irreversible Arrhenius reaction model with infinitely high activation energy. In the absence of heat losses and preferential diffusion effects, a curved flame with stationary shape and velocity close to those of an open bubble ascending in the same tube is found for values of the fuel mass fraction above a certain minimum that increases with the radius of the tube, while the numerical computations cease to converge to a stationary solution below this minimum mass fraction. The vortical flow of the gas behind the flame and in its transport region is described for tubes of different radii. It is argued that this flow may become unstable when the fuel mass fraction is decreased, and that this instability, together with the flame stretch due to the strong curvature of the flame tip in narrow tubes, may be responsible for the minimum fuel mass fraction. Radiation losses and a Lewis number of the fuel slightly above unity decrease the final combustion temperature at the flame tip and increase the minimum fuel mass fraction, while a Lewis number slightly below unity has the opposite effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through the use of the Distributed Fiber Optic Temperature Measurement (DFOT) method, it is possible to measure the temperature in small intervals (on the order of centimeters) for long distances (on the order of kilometers) with a high temporal frequency and great accuracy. The heat pulse method consists of applying a known amount of heat to the soil and monitoring the temperature evolution, which is primarily dependent on the soil moisture content. The use of both methods, which is called the active heat pulse method with fiber optic temperature sensing (AHFO), allows accurate soil moisture content measurements. In order to experimentally study the wetting patterns, i.e. shape, size, and the water distribution, from a drip irrigation emitter, a soil column of 0.5 m of diameter and 0.6 m high was built. Inside the column, a fiber optic cable with a stainless steel sheath was placed forming three concentric helixes of diameters 0.2 m, 0.4 m and 0.6 m, leading to a 148 measurement point network. Before, during, and after the irrigation event, heat pulses were performed supplying electrical power of 20 W/m to the steel. The soil moisture content was measured with a capacitive sensor in one location at depths of 0.1 m, 0.2 m, 0.3 m and 0.4 m during the irrigation. It was also determined by the gravimetric method in several locations and depths before and right after the irrigation. The emitter bulb dimensions and shape evolution was satisfactorily measured during infiltration. Furthermore, some bulb's characteristics difficult to predict (e.g. preferential flow) were detected. The results point out that the AHFO is a useful tool to estimate the wetting pattern of drip irrigation emitters in soil columns and show a high potential for its use in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermorheological changes in high hydrostatic pressure (HHP)-treated chickpea flour (CF) slurries were studied as a function of pressure level (0.1, 150, 300, 400, and 600 MPa) and slurry concentration (1:5, 1:4, 1:3, and 1:2 flour-to-water ratios). HHP-treated slurries were subsequently analyzed for changes in properties produced by heating, under both isothermal and non-isothermal processes. Elasticity (G′) of pressurized slurry increased with pressure applied and concentration. Conversely, heat-induced CF paste gradually transformed from solid-like behavior to liquid-like behavior as a function of moisture content and pressure level. The G′ and enthalpy of the CF paste decreased with increasing pressure level in proportion with the extent of HHP-induced starch gelatinization. At 25 °C and 15 min, HHP treatment at 450 and 600 MPa was sufficient to complete gelatinization of CF slurry at the lowest concentration (1:5), while more concentrated slurries would require higher pressures and temperature during treatment or longer holding times. Industrial relevance Demand for chickpea gel has increased considerably in the health and food industries because of its many beneficial effects. However, its use is affected by its very difficult handling. Judicious application of high hydrostatic pressure (HHP) at appropriate levels, adopted as a pre-processing instrument in combination with heating processes, is presented as an innovative technology to produce a remarkable decrease in thermo-hardening of heat-induced chickpea flour paste, permitting the development of new chickpea-based products with desirable handling properties and sensory attributes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized Lévêque solution is presented for the conjugate fluid–fluid problem that arises in the thermal entrance region of laminar counterflow heat exchangers. The analysis, carried out for constant property fluids, assumes that the Prandtl and Peclet numbers are both large compared to unity, and neglects axial conduction both in the fluids and in the plate, assumed to be thermally thin. Under these conditions, the thermal entrance region admits an asymptotic self-similar description where the temperature varies as a power ϳ of the axial distance, with the particularity that the self-similarity exponent must be determined as an eigenvalue by solving a transcendental equation arising from the requirement of continuity of heat fluxes at the heat conducting wall. Specifically, the analysis reveals that j depends only on the lumped parameter ƙ = (A2/A1)1/3 (α1/α2)1/3(k2/k1), defined in terms of the ratios of the wall velocity gradients, A, thermal diffusivities, α i, and thermal conductivities,k i, of the fluids entering, 1, and exiting, 2, the heat exchanger. Moreover, it is shown that for large (small) values of K solution reduces to the classical first (second) Lévêque solution. Closed-form analytical expressions for the asymptotic temperature distributions and local heat-transfer rate in the thermal entrance region are given and compared with numerical results in the counterflow parallel-plate configuration, showing very good agreement in all cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homologues of the amtB gene of enteric bacteria exist in all three domains of life. Although their products are required for transport of the ammonium analogue methylammonium in washed cells, only in Saccharomyces cerevisiae have they been shown to be necessary for growth at low NH4+ concentrations. We now demonstrate that an amtB strain of Escherichia coli also grows slowly at low NH4+ concentrations in batch culture, but only at pH values below 7. In addition, we find that the growth defect of an S. cerevisiae triple-mutant strain lacking the function of three homologues of the ammonium/methylammonium transport B (AmtB) protein [called methylammonium/ammonium permeases (MEP)] that was observed at pH 6.1 is relieved at pH 7.1. These results provide direct evidence that AmtB participates in acquisition of NH4+/NH3 in bacteria as well as eucarya. Because NH3 is the species limiting at low pH for a given total concentration of NH4+ + NH3, results with both organisms indicate that AmtB/MEP proteins function in acquisition of the uncharged form. We confirmed that accumulation of [14C]methylammonium depends on its conversion to γ-N-methylglutamine, an energy-requiring reaction catalyzed by glutamine synthetase, and found that at pH 7, constitutive expression of AmtB did not relieve the growth defects of a mutant strain of Salmonella typhimurium that appears to require a high internal concentration of NH4+/NH3. Hence, contrary to previous views, we propose that AmtB/MEP proteins increase the rate of equilibration of the uncharged species, NH3, across the cytoplasmic membrane rather than actively transporting—that is, concentrating—the charged species, NH4+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been proposed that synthesis of β-1,6-glucan, one of Saccharomyces cerevisiae cell wall components, is initiated by a uridine diphosphate (UDP)-glucose–dependent reaction in the lumen of the endoplasmic reticulum (ER). Because this sugar nucleotide is not synthesized in the lumen of the ER, we have examined whether or not UDP–glucose can be transported across the ER membrane. We have detected transport of this sugar nucleotide into the ER in vivo and into ER–containing microsomes in vitro. Experiments with ER-containing microsomes showed that transport of UDP–glucose was temperature dependent and saturable with an apparent Km of 46 μM and a Vmax of 200 pmol/mg protein/3 min. Transport was substrate specific because UDP–N-acetylglucosamine did not enter these vesicles. Demonstration of UDP–glucose transport into the ER lumen in vivo was accomplished by functional expression of Schizosaccharomyces pombe UDP–glucose:glycoprotein glucosyltransferase (GT) in S. cerevisiae, which is devoid of this activity. Monoglucosylated protein-linked oligosaccharides were detected in alg6 or alg5 mutant cells, which transfer Man9GlcNAc2 to protein; glucosylation was dependent on the inhibition of glucosidase II or the disruption of the gene encoding this enzyme. Although S. cerevisiae lacks GT, it contains Kre5p, a protein with significant homology and the same size and subcellular location as GT. Deletion mutants, kre5Δ, lack cell wall β-1,6 glucan and grow very slowly. Expression of S. pombe GT in kre5Δ mutants did not complement the slow-growth phenotype, indicating that both proteins have different functions in spite of their similarities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and sphingomyelin, whereas the other involves basolateral to apical transcytosis of both sphingolipids. We show that these distinct routes display a different sensitivity toward nocodazole and cytochalasin D, implying a specific transport dependence on either microtubules or actin filaments, respectively. Thus, nocodazole strongly inhibited the direct route, whereas sphingolipid transport by transcytosis was hardly affected. Moreover, nocodazole blocked “hyperpolarization,” i.e., the enlargement of the apical membrane surface, which is induced by treating cells with dibutyryl-cAMP. By contrast, the transcytotic route but not the direct route was inhibited by cytochalasin D. The actin-dependent step during transcytotic lipid transport probably occurs at an early endocytic event at the basolateral plasma membrane, because total lipid uptake and fluid phase endocytosis of horseradish peroxidase from this membrane were inhibited by cytochalasin D as well. In summary, the results show that the two sphingolipid transport pathways to the apical membrane must have a different requirement for cytoskeletal elements.