942 resultados para Transition metal compounds
Resumo:
The mechanism of the Heck reaction has been studied with regard to transition metal catalysis of the addition of propene and the formation of unsaturated polymers. The reactivity of nickel and palladium complexes with five different bidentate ligands with O,N donor atoms has been investigated by computational methods involving density functional theory. Hence, it is possible to understand the electronic and steric factors affecting the reaction and their relative importance in determining the products formed in regard of their control of the regiochemistry of the products. Our results show that whether the initial addition of propene is trans to O or to N of the bidentate ligand is of crucial importance to the subsequent reactions. Thus when the propene is trans to 0, 1,2-insertion is favoured, but when the propene is trans to N, then 2,1-insertion is favoured. This difference in the preferred insertion pathway can be related to the charge distribution engendered in the propene moiety when the complex is formed. Indeed charge effects are important for catalytic activity but also for regioselectivity. Steric effects are shown to be of lesser importance even when t-butyl is introduced into the bidentate ligand as a substituent. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Two cobalt complexes, [Co(L-Se)(phen)]center dot CH2Cl2 (1) and [Co(L-Se)(N,N-Me(2)en)(CH3COO-)] (2) have been synthesized and characterized by elemental analyses, magnetic measurements, i.r. studies etc. Single crystal X- ray studies reveal that in complex (1) cobalt atom is in +2 oxidation state with trigonal bipyramidal geometry, while in complex (2) it is in +3 oxidation state and surrounded octahedrally. The asymmetric unit of complex (2) contains two crystallographically independent discrete molecules. Complex (1) was found to be paramagnetic with mu(eff) = 2.19 BM indicating a low spin cobalt(II) d(7) system, whereas complex (2) is found to be diamagnetic with cobalt(III) in low spin d(6) state. The kinetic studies on the reduction of (2) by ascorbic acid in 80% MeCN-20% H2O (v/v) at 25 degrees C reveal that the reaction proceeds through the rapid formation of inner-sphere adduct, probably by replacing the loosely coordinated AcO- group, followed by electron transfer in a slow step and is supported by a large Q (formation constant) value.
Resumo:
A new family of antimony sulfides, incorporating the macrocyclic tetramine 1,4,8,11-tetraazacyclotetradecane ( cyclam), has been prepared by a hydrothermal method. [C10N4H26][Sb4S7] (1), [Ni(C10N4H24)][Sb4S7] (2), and [Co(C10N4H24)](x)[C10N4H26](1-x)[Sb4S7] (0.08 <= x <= 0.74) (3) have been characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetry, and analytical electron microscopy. All three materials possess the same novel three-dimensional Sb4S72- framework, constructed from layers of parallel arrays of Sb4S84- chains stacked at 90 to one another. In 1, doubly protonated macrocyclic cations reside in the channel structure of the antimonysulfide framework. In 2 and 3, the cyclam acts as a ligand, chelating the divalent transition- metal cation. Analytical and X-ray diffraction data indicate that the level of metal incorporation in 2 is effectively complete, whereas in 3, both metalated and nonmetalated forms of the macrocycle coexist within the structure.
Resumo:
Using combination of Mn-Co transition metal species with N-hydroxyphthalimide as a catalyst for one-step oxidation of cyclohexane with molecular oxygen in acetic acid at 353 K can give more than 95% selectivity towards oxygenated products with adipic acid as a major product at a high conversion (ca. 78%). A turnover number of 74 for this partial oxidation are also recorded.
Resumo:
The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC. TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.
Resumo:
Lipid oxidation was studied in beef and chicken muscle after high pressure treatment (0.1-800 MPa) at different temperatures (20-70 degrees C for 20 min, prior to storage at 4 degrees C for 7 days. Pressure treatment of beef samples at room temperature led to increases in TBARS values after 7 days storage at 4 degrees C; however, the increases were more marked after treatment at pressures >= 400 MPa (at least fivefold) than after treatment at lower pressures (less than threefold). Similar results were found in those samples treated at 40 degrees C, but at 60 degrees C and 70 degrees C pressure had little additional effect on the oxidative stability of the muscle. Pressure treatments of 600 MPa and 800 MPa, at all temperatures. induced increased rates of lipid oxidation in chicken muscle, but, in general, chicken muscle was more stable than beef to pressure. and the catalytic effect of pressure was still seen at the higher temperatures of 50 degrees C, 60 degrees C and 70 degrees C. The addition of 1%, Na(2)EDTA decreased TBARS values of the beef muscle during storage and inhibited the increased rates of lipid oxidation induced by pressure. The inhibition by vitamin E (0.05% w/w) and BHT (0.02% w/w), either alone or in combination, were less marked than seen with Na(2)EDTA, suggesting that transition metal ions released from insoluble complexes are of major importance in catalysing lipid oxidation in pressure-treated muscle foods. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Substituted titanocenes like ansa-titanocenes, diarylmethyl-substituted and benzyl-substituted titanocenes, are known for their cytotoxic potential and they can be synthesised using 6-arylfulvenes. Nevertheless, in the case of using 6-(4-morpholin-4yl-phenyl) fulvene (5a) or 6-{[bis-(2-methoxyethyl)amino]phenyl} fulvene (5b) the synthetic possibilities seem to be limited, but the morpholino and the bis-(2-methoxyethyl)amino substituent are in terms of an improved water solubility and drug availability in the cell very interesting groups. The corresponding benzaldehydes, which are the starting material for the synthesis of these fulvenes, were not commercially available and therefore, a modified synthetic approach had to be introduced. Nevertheless, the reactivity of the obtained fulvenes was unexpected and only the ansa-titanocene bis-[{[bis-(2-methoxyethyl)amino]phenyl}cyclopentadienyl] titanium(IV) dichloride (6b) and the benzyl-substituted titanocene [1,2-di(cyclopentadienyl)-1,2-di(4-morpholin-4yl-phenyl)-ethanediyl] titanium dichloride (8a) could be obtained and characterised. When the benzyl-substituted titanocene (8a) was tested against pig kidney cells (LLC-PK) an anti-proliferative effect, resulting in an IC50 value of 25 mu M, was observed. This IC50 value is in the lower range of the cytotoxicities evaluated for titanocenes up to now. The ansa-titanocene (6b) showed surprisingly, when tested on the same cell line, a proliferative effect.
Resumo:
From the carbolithiation of 6-N,N-dimethylamino fulvene (3a) and different ortho-lithiated indole derivatives (5-methoxy-N-methylindole, N-methylindole and N,N-dimethylaminomethylindole), the corresponding lithium cyclopentadienide intermediate (4a-c) was formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in dimethylamino-functionalised titanocenes (5a-c). When these titanocenes were tested against LLC-PK cells, the IC50 values obtained were of 37 and 71 mu M for titanocenes 5a and 5b respectively. The most cytotoxic titanocene in this paper, 5c showed an IC50 value of 8.4 mu M is found to be almost as cytotoxic as cis-platin, which showed an IC50 value of 3.3 mu M, when tested on the LLC-PK cell line, and titanocene 5c is approximately 250 times better than titanocene dichloride itself.
Resumo:
Bis-[(p-methoxybenzyl)cyclopentadienyl] titanium dichloride, better known as Titanocene Y, is a newly synthesized transition metal-based anticancer drug. We studied the antitumor activity of Titanocene Y with concentrations of 2.1, 21 and 210 mu mol/l against a freshly explanted human breast cancer, using an in-vitro soft agar cloning system. The sensitivity against Titanocene Y was highly remarkable in the breast cancer tumor in the full concentration range. Titanocene Y showed cell death induction at 2.1 mu mol/l, well comparable to cisplatin, given at a concentration of 1.0 mu mol/l. A further preclinical development of Titanocene Y was warranted and therefore an MCF-7 human breast cancer xenograft nonobese diabetic/severe combined immunodeficient mouse model was used. Titanocene Y was given for 21 days at 30 mg/kg/ day (75% of the maximum tolerable dose of Titanocene Y), which resulted in the reduction of the tumor volume to around one-third, whereas no mouse was lost because of the surprisingly low toxicity of Titanocene Y.
Resumo:
The complex [Ru(C&3bond; CC&3bond; N)(dppe)Cp*] (1) is readily obtained (ca. 70%) from the sequential reaction of [Ru(C=CH2)(dppe)Cp*]PF6 with (BuLi)-Bu-n and phenyl cyanate. The complex behaves as a typical transition metal acetylide upon reaction with tetracyanoethene, affording a metallated pentacyanobutadiene. Complex I is a useful metalloligand, and its reactions with [W(thf)(CO)5], [RuCl(PPh3)(2)Cp], [RuCl(dppe)Cp*] or cis-[RuCl2(dppe)(2)] all afforded products featuring the M-C&3bond; CC&3bond; N-M' motif, for which ground state structures indicate a degree of polarisation. Electrochemical and spectroelectrochemical studies reveal moderate interactions between the metal centres in the 35-electron dications [{Cp*(dppe)Ru}(mu-C&3bond; CC&3bond; N){RuL2Cp'}](2+) Ru(PPh3)(2)CP, Ru(dppe)Cp*).
Resumo:
A mononuclear complex [CuL] (1), a binuclear complex [Cu2LCl2(H2O)] (2), a trinuclear complex [Cu3L2](ClO4)(2) (3) involving o-phenylenediamine and salicylaldehyde and another binuclear complex of a tridentate ligand (H2L1) [Cu2L (2) (1) ](CH3COO)(2) (4) involving o-phenylenediamine and diacetylmonoxime have been synthesized, where H2L = N,N'-o-phenylenebis(salicylideneimine) and H2L1 = 3-(2-aminophenylimino)butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral and magnetic studies. The binuclear complex (2) was characterized structurally where the two Cu(II) centers are connected via an oxygen-bridged arrangement.
Resumo:
The preparation, crystal structures and magnetic properties of two new isoelectronic and isomorphous formate-and nitrite-bridged 1D chains of Mn(III)-salen complexes, [Mn(salen)(HCOO)](n) (1) and [Mn(salen)(NO2)](n) (2), where salen is the dianion of N,N'-bis(salicylidene)-1,2-diaminoethane, are presented. The structures show that the salen ligand coordinates to the four equatorial sites of the metal ion and the formate or nitrite ions coordinate to the axial positions to bridge the Mn(III)-salen units through a syn-anti mu-1 kappa O:2 kappa O' coordination mode. Such a bridging mode is unprecedented in Mn(III) for formate and in any transition metal ion for nitrite. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 indicate the presence of ferromagnetic exchange interactions with J values of 0.0607 cm(-1) (for 1) and 0.0883 cm(-1) (for 2). The ac measurements indicate negligible frequency dependence for 1 whereas compound 2 exhibits a decrease of chi(ac)' and a concomitant increase of chi(ac)'' on elevating frequency around 2 K. This finding is an indication of slow magnetization reversal characteristic of single-chain magnets or spin-glasses. The mu-nitrito-1 kappa O:2 kappa O' bridge seems to be a potentially superior magnetic coupler to the formate bridge for the construction of single-molecule/-chain magnets as its coupling constant is greater and the chi(ac)' and chi(ac)'' show frequency dependence.
Resumo:
The thermoelectric behaviour of the transition-metal disulphides n-type NiCr2S4 and p-type CuCrS2 is investigated. Materials prepared by high-temperature reaction were consolidated using cold-pressing and sintering, hot-pressing (HP) in graphite dies or spark-plasma sintering (SPS) in tungsten carbide dies. The consolidation conditions have a marked influence on the electrical transport properties. In addition to the effect on sample density, altering the consolidation conditions results in changes to the sample composition, including the formation of impurity phases. Maximum room-temperature power factors are 0.18 mW m-1 K-2 and 0.09 mW m-1 K-2 for NiCr2S4 and CuCrS2, respectively. Thermal conductivities of ca. 1.4 and 1.2 W m-1 K-1 lead to figures of merit of 0.024 and 0.023 for NiCr2S4 and CuCrS2, respectively.
Resumo:
The structural, electronic and magnetic properties of Fe and Ti atomic wires and the complete covering when adsorbed on graphene are presented through ab initio calculations based on density functional theory. The most stable configurations are investigated for Fe and Ti in different concentrations adsorbed on the graphene surface, and the corresponding binding energies are calculated. The results show a tendency of the Ti atoms to cover uniformly the graphene surface, whereas the Fe atoms form clusters. The adsorption of the transition metal on the graphene surface changes significantly the electronic density of states near the graphene Fermi region. In all arrangements studied, a charge transfer is observed from the adsorbed species to the graphene surface due to the high hybridizations between the systems.
Resumo:
One pair of reactants, Cu(hfac)(2) = M and the hinge-flexible radical ligand 5-(3-N-tert-butyl-N-aminoxylphenyl)pyrimidine (3PPN = L), yields a diverse set of five coordination complexes: a cyclic loop M(2)L(1) dimer; a 1:1 cocrystal between an M(2)L(2) loop and an ML(2) fragment; a ID chain of M(2)L(2) loops linked by M; two 2D M(3)L(2) networks of (M-L)(n) chains crosslinked by M with different repeat length pitches; a 3D M(3)L(2) network of M(2)L(2) loops cross-linking (M-L)(n)-type chains with connectivity different from those in the 2D networks. Most of the higher dimensional complexes exhibit reversible, temperature-dependent spin-state conversion of high-temperature paramagnetic states to lower magnetic moment states having antiferromagnetic exchange within Cu-ON bonds upon cooling, with accompanying bond contraction. The 3D complex also exhibited antiferromagnetic exchange between Cu(II) ions linked in chains through pyrimidine rings.