919 resultados para Trade unions and union structure
Resumo:
Landscape structure and heterogeneity play a potentially important, but little understood role in predator-prey interactions and behaviourally-mediated habitat selection. For example, habitat complexity may either reduce or enhance the efficiency of a predator's efforts to search, track, capture, kill and consume prey. For prey, structural heterogeneity may affect predator detection, avoidance and defense, escape tactics, and the ability to exploit refuges. This study, investigates whether and how vegetation and topographic structure influence the spatial patterns and distribution of moose (Alces alces) mortality due to predation and malnutrition at the local and landscape levels on Isle Royale National Park. 230 locations where wolves (Canis lupus) killed moose during the winters between 2002 and 2010, and 182 moose starvation death sites for the period 1996-2010, were selected from the extensive Isle Royale Wolf-Moose Project carcass database. A variety of LiDAR-derived metrics were generated and used in an algorithm model (Random Forest) to identify, characterize, and classify three-dimensional variables significant to each of the mortality classes. Furthermore, spatial models to predict and assess the likelihood at the landscape scale of moose mortality were developed. This research found that the patterns of moose mortality by predation and malnutrition across the landscape are non-random, have a high degree of spatial variability, and that both mechanisms operate in contexts of comparable physiographic and vegetation structure. Wolf winter hunting locations on Isle Royale are more likely to be a result of its prey habitat selection, although they seem to prioritize the overall areas with higher moose density in the winter. Furthermore, the findings suggest that the distribution of moose mortality by predation is habitat-specific to moose, and not to wolves. In addition, moose sex, age, and health condition also affect mortality site selection, as revealed by subtle differences between sites in vegetation heights, vegetation density, and topography. Vegetation density in particular appears to differentiate mortality locations for distinct classes of moose. The results also emphasize the significance of fine-scale landscape and habitat features when addressing predator-prey interactions. These finer scale findings would be easily missed if analyses were limited to the broader landscape scale alone.
Resumo:
The Zagros oak forests in Western Iran are critically important to the sustainability of the region. These forests have undergone dramatic declines in recent decades. We evaluated the utility of the non-parametric Random Forest classification algorithm for land cover classification of Zagros landscapes, and selected the best spatial and spectral predictive variables. The algorithm resulted in high overall classification accuracies (>85%) and also equivalent classification accuracies for the datasets from the three different sensors. We evaluated the associations between trends in forest area and structure with trends in socioeconomic and climatic conditions, to identify the most likely driving forces creating deforestation and landscape structure change. We used available socioeconomic (urban and rural population, and rural income), and climatic (mean annual rainfall and mean annual temperature) data for two provinces in northern Zagros. The most correlated driving force of forest area loss was urban population, and climatic variables to a lesser extent. Landscape structure changes were more closely associated with rural population. We examined the effects of scale changes on the results from spatial pattern analysis. We assessed the impacts of eight years of protection in a protected area in northern Zagros at two different scales (both grain and extent). The effects of protection on the amount and structure of forests was scale dependent. We evaluated the nature and magnitude of changes in forest area and structure over the entire Zagros region from 1972 to 2009. We divided the Zagros region in 167 Landscape Units and developed two measures— Deforestation Sensitivity (DS) and Connectivity Sensitivity (CS) — for each landscape unit as the percent of the time steps that forest area and ECA experienced a decrease of greater than 10% in either measure. A considerable loss in forest area and connectivity was detected, but no sudden (nonlinear) changes were detected at the spatial and temporal scale of the study. Connectivity loss occurred more rapidly than forest loss due to the loss of connecting patches. More connectivity was lost in southern Zagros due to climatic differences and different forms of traditional land use.
Resumo:
Patterns of increasing leaf mass per area (LMA), area-based leaf nitrogen (Narea), and carbon isotope composition (δ13C) with increasing height in the canopy have been attributed to light gradients or hydraulic limitation in tall trees. Theoretical optimal distributions of LMA and Narea that scale with light maximize canopy photosynthesis; however, sub-optimal distributions are often observed due to hydraulic constraints on leaf development. Using observational, experimental, and modeling approaches, we investigated the response of leaf functional traits (LMA, density, thickness, and leaf nitrogen), leaf carbon isotope composition (δ13C), and cellular structure to light availability, height, and leaf water potential (Ψl) in an Acer saccharum forest to tease apart the influence of light and hydraulic limitations. LMA, leaf and palisade layer thickness, and leaf density were greater at greater light availability but similar heights, highlighting the strong control of light on leaf morphology and cellular structure. Experimental shading decreased both LMA and area-based leaf nitrogen (Narea) and revealed that LMA and Narea were more strongly correlated with height earlier in the growing season and with light later in the growing season. The supply of CO2 to leaves at higher heights appeared to be constrained by stomatal sensitivity to vapor pressure deficit (VPD) or midday leaf water potential, as indicated by increasing δ13C and VPD and decreasing midday Ψl with height. Model simulations showed that daily canopy photosynthesis was biased during the early growing season when seasonality was not accounted for, and was biased throughout the growing season when vertical gradients in LMA and Narea were not accounted for. Overall, our results suggest that leaves acclimate to light soon after leaf expansion, through an accumulation of leaf carbon, thickening of palisade layers and increased LMA, and reduction in stomatal sensitivity to Ψl or VPD. This period of light acclimation in leaves appears to optimize leaf function over time, despite height-related constraints early in the growing season. Our results imply that vertical gradients in leaf functional traits and leaf acclimation to light should be incorporated in canopy function models in order to refine estimates of canopy photosynthesis.
Resumo:
Alberta, responsible for ninety per cent of Canada's output, had, by 1947 entered into her fifth year of production decline. Only ten per cent of Canada's oil requirements were secured from home fields. Ninety per cent had to be imported, mainly from the United States. How long could imports be maintained on present levels? During the year, the United States had started rationing; in one sector of its domain. Would this become general? If so, what was the answer for Canada?
Resumo:
What can trade regulation contribute towards ameliorating the GHG emissions and reducing their concentrations in the atmosphere? This collection of essays analyses options for climate-change mitigation through the lens of the trade lawyer. By examining international law, and in particular the relevant WTO agreements, the authors address the areas of potential conflict between international trade law and international law on climate mitigation and, where possible, suggest ways to strengthen mutual supportiveness between the two regimes. They do so taking into account the drivers of human-induced climate change in energy markets and of consumption.
Resumo:
European annual species of the genus Rhinanthus often exhibit seasonal ecotypic variation, a phenomenon also known from related genera of hemiparasitic Orobanchaceae. Populations with different flowering times exist, correlated with differences in a number of morphological characters. The present study evaluates the correlation of morphological characters and genetic differentiation of populations of Rhinanthus alectorolophus. Thirty-nine populations of three different subspecies from southwestern Germany were sampled. A total of 798 individuals were used for morphological analyses and 187 of these for AFLP analyses. Principal component analysis showed that morphological variation is mostly continuous. In a discriminant analysis based on morphological characters, only 89.7 % of all individuals were correctly assigned to their previously determined subspecies, indicating that subspecies identification is ambiguous for some populations. Using AFLP data and Bayesian assignment analysis, the sampled individuals could be grouped in three genetic clusters which do not correspond to the three subspecies. Instead, the clustering shows a clear geographic pattern and a Mantel test likewise revealed a significant correlation between genetic and geographic distances. Correlations of genetic distances with differences in morphological characters were weak and mostly insignificant. The results indicate that the subspecies of R. alectorolophus do not form discrete entities and that the character combinations distinguishing them are homoplastic.
Resumo:
Sr2+ co-doped LaBr3:5%Ce scintillators show a record low energy resolution of 2% at 662 keV and a considerably better proportional response compared to standard LaBr3:5%Ce. This paper reports on the optical properties and time response of Sr co-doped LaBr3:5%Ce. Multiple excitation and emission bands were observed in X-ray and optically excited luminescence measurements. Those bands are ascribed to three different Ce3+ sites. The first is the unperturbed site with the same luminescence properties as those of standard LaBr3:Ce. The other two are perturbed sites with red-shifted 4f-5d1 Ce3+ excitation and emission bands, longer Ce3+ decay times, and smaller Stokes shifts. The lowering of the lowest 5d level of Ce3+ was ascribed to larger crystal field interactions at the perturbed sites. Two types of point defects in the LaBr3 matrix were proposed to explain the observed results. No Ce4+ ions were detected in Sr co-doped LaBr3:5%Ce by diffuse reflectance measurements.
Resumo:
Despite efforts implicating the cationic channel transient receptor potential melastatin member 4 (TRPM4) to cardiac, nervous, and immunological pathologies, little is known about its structure and function. In this study, we optimized the requirements for purification and extraction of functional human TRPM4 protein and investigated its supra-molecular assembly. We selected the Xenopus laevis oocyte expression system because it lacks endogenous TRPM4 expression, it is known to overexpress functional human membrane channels, can be used for structure-function analysis within the same system, and is easily scaled to improve yield and develop moderate throughput capabilities through the use of robotics. Negative-stain electron microscopy (EM) revealed various sized low-resolution particles. Single particle analysis identified the majority of the projections represented the monomeric form with additional oligomeric structures potentially characterized as tetramers. Two-electrode voltage clamp electrophysiology demonstrated that human TRPM4 is functionally expressed at the oocyte plasma membrane. This study opens the door for medium-throughput screening and structure-function determination of this important therapeutically relevant target.
Resumo:
The north-eastern escarpment of Madagascar has been labelled a global biodiversity hotspot due to its extremely high rates of endemic species which are heavily threatened by accelerated deforestation rates and landscape change. The traditional practice of shifting cultivation or "tavy" used by the majority of land users in this area to produce subsistence rice is commonly blamed for these threats. A wide range of stakeholders ranging from conservation to development agencies, and from the private to the public sector has therefore been involved in trying to find solutions to protect the remaining forest fragments and to increase agricultural production. Consequently, provisioning, regulating and socio-cultural services of this forest-mosaic landscape are fundamentally altered leading to trade-offs between them and consequently new winners and losers amongst the stakeholders at different scales. However, despite a growing amount of evidence from case studies analysing local changes, the regional dynamics of the landscape and their contribution to such trade-offs remain poorely understood. This study therefore aims at using generalised landscape units as a base for the assessment of multi-level stakeholder claims on ecosystem services to inform negotiation, planning and decision making at a meso-scale. The presented study applies a mixed-method approach combining remote sensing, GIS and socio-economic methods to reveal current landscape dynamics, their change over time and the corresponding ecosystem service trade-offs induced by diverse stakeholder claims on the regional level. In a first step a new regional land cover classification for three points in time (1995, 2005 and 2011) was conducted including agricultural classes characteristic for shifting cultivation systems. Secondly, a novel GIS approach, termed “landscape mosaics approach” originally developed to assess dynamics of shifting cultivation landscapes in Laos was applied. Through this approach generalised landscape mosaics were generated allowing for a better understanding of changes in land use intensities instead of land cover. As a next step we will try to use these landscape units as proxies to map provisioning and regulating ecosystem services throughout the region. Through the overlay with other regional background data such as accessibility and population density and information from a region-wide stakeholder analysis, multiscale trade-offs between different services will be highlighted. The trade-offs observed on the regional scale will then be validated through a socio-economic ground-truthing within selected sites at the local scale. We propose that such meso-scale knowledge is required by all stakeholders involved in decision making towards sustainable development of north-eastern Madagascar.