923 resultados para Titanium Dioxide
Resumo:
Ethylene-propylene copolymerization, using [(Ph)NC(R-2)CHC(R-1)O](2)TiCl2 (R-1 = CF3, Ph, or t-Bu; R-2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High-molecular-weight ethylene-propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R-1 and R-2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R-1 and R-2, one complex (R-1 = CF3; R-2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with C-13 NMR to determine the methylene sequence distribution and number-average sequence lengths of uninterrupted methylene carbons.
Resumo:
An experimentally simple and inexpensive catalyst system based on hexabutylguanidinium/ZnBr, has been developed for the coupling of carbon dioxide and epoxides to form cyclic carbonates with significant catalytic activity under mild reaction conditions without using additional organic solvents (e.g. the turnover frequencies (TOF, h(-1)) values as high as 6.6 x 10(3) h(-1) for styrene oxide and 1.01 x 10(4) h(-1) for epichlorohydrin). This catalyst system also offers the advantages of recyclability and reusability. Therefore, it is a very effective, environmentally benign, and simple catalytic process. The special steric and electrophilic characteristics of hexabutylguanidinium bromide ionic liquid result in the prominent performance of this novel catalyst system.
Resumo:
A series of new titanium complexes bearing beta-diiminato ligands [(Ph)NC(R-1)CHC(R-2)N(Ph)](2)TiCl2 (4a: R-1 = R-2 = CH3; 4b: R-1 = R-2 = CF3; 4c: R-1 = Ph, R-2 = CH3; 4d: R-1 = Ph, R-2 = CF3) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4a and 4c adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4a-d are active catalysts for ethylene polymerization, and produce high molecular weight polyethylenes. Catalyst activities and the molecular weights of polymers are considerably influenced by the steric and electronic effects of substituents on the catalyst backbone under the same polymerization condition. With the strong electron-withdrawing groups (CF3) at R-1 or/and R-2 position, complexes 4b and 4d show higher activities than complexes 4a and 4c, respectively.
Resumo:
A series of titanium phosphinimide complexes [Ph2P(2-RO-C6H4)(2)TiCl2 (7, R = CH3; 8, R = CHMe2) and (PhP(2-Me2CHOC6H4)][THF]TiCl3 (9) have been prepared by reaction of TiCl4 with the corresponding phosphinimines under dehalosilylation. The structure of complex 9 has been determined by X-ray crystallography, and a solvent molecule THF was found to be coordinated with the central metal and the Ti-O bond was consistent with the normal Ti-O (donor) bond length. The complexes 7 and 8 displayed inactive to ethylene polymerization, and the complex 9 displayed moderate activity in the presence of modified methylaluminoxane (MMAO) or i-BU3Al/Ph3CB(C6F5)(4), and this should be partly attributed to coordination of THF with titanium and the steric effect of two iso-propoxyl. And catalytic activity up to 32.2 kg-PE/(mol-Ti h bar) was observed.
Resumo:
A series of titanium and zirconium complexes based on aminoiminophosphorane ligands [Ph2P(Nt-Bu)(NR)](2)MCl2 (4, M = Ti, R = Ph; 5, M = Zr, R = Ph; 6, M = Ti, R = SiMe3; 7, M = Zr, R = SiMe3) have been synthesized by the reaction of the ligands with TiCl4 and ZrCl4. The structure of complex 4 has been determined by X-ray crystallography. The observed very weak interaction between Ti and P suggests partial pi-electron delocalization through both Ti and P. The complexes 4-7 are inactive for ethylene polymerization in the presence of modified methylaluminoxane (MMAO) or i-Bu3Al-Ph3CB(C6F5)(4) under atmospheric pressure, and is probably the result of low monomer ethylene concentration and steric congestion around the central metal.
Resumo:
A new type of sol-gel-derived titanium oxide/copolymer composite material was developed and used for the construction of glucose biosensor. The composite material merged the best properties of the inorganic species, titanium oxide and the organic copolymer, poly(vinyl alcohol) grafting 4-vinylpyridine (PVA-g-PVP). The glucose oxidase entrapped in the composite matrix retained its bioactivity. Morphologies of the composite-modified electrode and the enzyme electrode were characterized with a scanning electron microscope. The dependence of the current responses on enzyme-loading and pH was studied. The response time of the biosensor was < 20 s and the linear range was up to 9 mM with a sensitivity of 405 nA/mM. The biosensor was stable for at least I month. In addition, the tetrathiafulvalene-mediated enzyme electrode was constructed for the decrease of detection potential and the effect of three common physiological sources that might interfere was also investigated.
Resumo:
The copolymerizations of carbon dioxide (CO2) and propylene oxide (PO) were performed using new ternary rare-earth catalyst, It was found that the rare-earth coordination catalyst consisting of Nd(CCl3COO)(3), ZnEt2 and glycerine was very effective for the copolymerization of PO with CO2. The effects of the relative molar ratio and addition order of the catalyst components, copolymerization reaction time, and operating pressure as well as temperature on the copolymerization were systematically investigated. At an appropriate combination of all variables, the yield could be as high as 6875 g/mol Nd per hour at 90 degreesC in a 8 h reaction period.
Resumo:
The kinetics of the thermal degradation of poly(propylene carbonate) (PPC) were investigated with different kinetic methods with data from thermogravimetric analysis under dynamic conditions. The apparent activation energies obtained with different integral methods (Ozawa-Flynn-Wall and Coats-Redfern) were consistent with the values obtained with the Kinssinger method (99.93 kJ/mol). The solid-state decomposition process was a sigmoidal A(3) type in terms of the Coats-Redfern and Phadnis-Deshpande results. The influence of the heating rate on the thermal decomposition temperature was also studied. The derivative thermogravimetry curves of PPC confirmed only one weight-loss step.
Resumo:
The synthesis Of SiO2 coated CeO2 nanoparticles by humid solid state reaction at room. temperature is described. Transmission electron microscope results show that CeO2 Particles were coated with a layer Of SiO2. Binding energy of Ce 3d(5/2) was shifted from 883.8 to 882.8 eV after coating in the XPS Ce 3d spectra. This confirms the chemical bond formation between SiO32- and Ce4+. Because the surface photovoltage property of CeO2 nanoparticles that were used as core materials in the experiment approaches to that of CeO2 macroparticles, peak P2 (electron transition from 0 2p on surface to Ce 4f) disappeared in the surface photovoltage spectrum of CeO2 nanoparticles. Also, the effect Of SiO2 on the electron transition from 0 2p to Ce 4f results in the lowering of surface photovoltage response intensity of P1 peak (electron transition from 0 2p in bulk to Ce 4f).
Resumo:
The miscibility and hydrogen-bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p-vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The single glass-transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen-bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen-bonding interactions between the oxygen atoms of carbon-oxygen single bonds and carbon-oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C-1s peaks and the evolution of three novel O-1s peaks in the blends, which supports the suggestion from FTIR analyses.
Resumo:
The electrochemical SO2 sensor worked at the fixed potential and prepared with Nafion membrane as the solid electrolyte was studied. It v as observed that after Nafion membrane, was treated with H2SO4, the water-preserving ability of the membrane was increased. In turn, the performance of the sensor became stable. After lifetime test for 4 months, the performance of the sensor deceased slightly, Thus this kind of sensor may become a gas sensor for the practical application.
Resumo:
Polyimide hybrid films containing bimetalic compounds were obtained by codoping poly(amic acid) with a barium and titanium precursor prepared from BaCO3, Ti(OBu)(4), and lactic acid followed by casting and thermal curing. FTIR, WAXD, and XPS measurements showed that barium and titanium precursor could be transformed to BaTiO3 at a temperature above 650 degreesC, while the mixed oxides were only found in hybrid films. The measurements of TEM and AFM indicated a homogeneous distribution of inorganic phase with particle sizes less than 50 nm. The hybrid films exhibited fairly high thermal stability, good optical transparency, and promising mechanical properties. The incorporation of 10 wt % barium and titanium oxide lowered surface and volume electrical resistivity by 2 and 5 orders, respectively, increasing dielectric constant from 3.5 to 4.2 and piezoelectric constant from 3.8 to 5.2 x 10(-12) c/N, relative to the nondoped polyimide film.
Resumo:
Electrocatalytic performance of the Pr-TiOx/Ti electrode prepared with electrochemical reduction-oxidation method toward the oxidation of methanol has been studied, The experimental results showed that the Pt-TiOx/Ti electrode has a high electrocatalytic activity and good stability for the electrocatalytic oxidation of methanol, By means of electrochemical, XPS, STM and in-situ FTIR techniques, it was found that one reason for the electrode to exhibit an excellent performance is attributed to the high dispersion between nanosized Pt and TiOx particles, The low adsorption ability of the intermediate derived from methanol, such as linearly adsorbed CO species on the electrode surface due to the interaction between Pt and TiOx, also results in the excellent performance.
Resumo:
Crystal and molecular structure of (2.6-dipropylphenylamide) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained from a mixture of ether/hexane as orthorhombic. with a = 12.658 (3) Angstrom. b = 16.62 (3) Angstrom. c = 11.760 (2) Angstrom. V = 2474.2 (9) Angstrom(3). Z = 4, space group Pnma. R = 0.0399; Componud I compose of the pi-bounded ring with its dimethylsilyl-dipropyl phenyl amido group and the two terminal chloride atoms coordinated to central metal to form a so-called constrained geometry catalyst (CGC) structure. The result of molecular mechanics (MM) calculations on compound I shows that bond lengths and bond angles from the MM calculation are comparable to the data obtained from the X-ray diffraction study. The relation of the structure of CGCs and their catalytic activity by MM calculations is also discussed.