924 resultados para Tissue engineering scaffold
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.
Resumo:
We sequenced cDNAs coding for chicken cellular nucleic acid binding protein (CNBP). Two slightly different variations of the open reading frame were found, each of which translates into a protein with seven zinc finger domains. The longest transcript contains an in-frame insert of 3 bp. The sequence conservation between chick CNBP cDNAs with human, rat and mouse CNBP cDNAs is extreme, especially in the coding region, where the deduced amino acid sequence identity with human, rat and mouse CNBP is 99%. CNBP-like transcripts were also found in various tissues from insect, shrimp, fish and lizard. Regions with remarkable nucleotide conservation were also found in the 3' untranslated region, indicating important functions for these regions. Quantitative reverse transcription polymerase chain reaction (RT-PCR) indicated that in the chick, CNBP is present in all tissues examined in approximately equal ratios to total RNA. RT-PCR of total RNA isolated from different phyla indicate CNBP-like proteins art widespread throughout the animal kingdom. The extraordinary level of conservation suggests an important physiological role for CNBP. (C) 1997 Elsevier Science Inc.
Resumo:
Multifrequency bioimpedance analysis has the potential to provide a non-invasive technique for determining body composition in live cattle. A bioimpedance meter developed for use in clinical medicine was adapted and evaluated in 2 experiments using a total of 31 cattle. Prediction equations were obtained for total body water, extracellular body water, intracellular body water, carcass water and carcass protein. There were strong correlations between the results obtained through chemical markers and bioimpedance analysis when determined in cattle that had a wide range of liveweights and conditions. The r(2) values obtained were 0.87 and 0.91 for total body water and extracellular body water respectively. Bioimpedance also correlated with carcass water, measured by chemical analysis (r(2) = 0.72), but less well with carcass protein (r(2) = 0.46). These correlations were improved by inclusion of liveweight and sex as variables in multiple regression analysis. However, the resultant equations were poor predictors of protein and water content in the carcasses of a group of small underfed beef cattle, that had a narrow range of liveweights. In this case, although there was no statistical difference between the predicted and measured values overall, bioimpedance analysis did not detect the differences in carcass protein between the 2 groups that were apparent following chemical analysis. Further work is required to determine the sensitivity of the technique in small underfed cattle, and its potential use in heavier well fed cattle close to slaughter weight.
Resumo:
Potential errors in the application of mixture theory to the analysis of multiple-frequency bioelectrical impedance data for the determination of body fluid volumes are assessed. Potential sources of error include: conductive length; tissue fluid resistivity; body density; weight and technical errors of measurement. Inclusion of inaccurate estimates of body density and weight introduce errors of typically < +/-3% but incorrect assumptions regarding conductive length or fluid resistivities may each incur errors of up to 20%.
Resumo:
Tissue responses to the application of Rototags and Jumbo Rototags in the first dorsal fin of Carcharhinus melanopterus, C. obscurus and C. plumbeus were examined. The acute response included tissue tearing and haemorrhage and was present by 5 days post-tagging. The intermediate response had begun by 20 days post-tagging and continued beyond 207 days. This response involved decreased red blood cell activity as the inflammatory response commenced. The chronic response had begun by 301 days and was complete by 553 days with a layer of fibrous connective tissue walling off the tag. External damage to the fin was caused by continued abrasion by the tag. Repair scales were observed at 242 days using scanning electron microscopy and were confirmed histologically in 61- and 553-day samples. Repair scales were not seen in areas of continuous abrasion. No infection was observed in tissues surrounding the wound. Disruption of the fin surface was observed due to abrasion by the tag, but did not appear to cause a severe tissue reaction. The tissue responses observed were consistent with a normal, but relatively slow, healing in the vicinity of the tag wound. Use of Rototags or Jumbo Rototags appears to be an efficient way of marking elasmobranchs with minimal damage to the shark. (C) 1998 The Fisheries Society of the British Isles.
Resumo:
Ex vivo hematopoiesis is increasingly used for clinical applications. Models of ex vivo hematopoiesis are required to better understand the complex dynamics and to optimize hematopoietic culture processes. A general mathematical modeling framework is developed which uses traditional chemical engineering metaphors to describe the complex hematopoietic dynamics. Tanks and tubular reactors are used to describe the (pseudo-) stochastic and deterministic elements of hematopoiesis, respectively. Cells at any point in the differentiation process can belong to either an immobilized, inert phase (quiescent cells) or a mobile, active phase (cycling cells). The model describes five processes: (1) flow (differentiation), (2) autocatalytic formation (growth),(3) degradation (death), (4) phase transition from immobilized to mobile phase (quiescent to cycling transition), and (5) phase transition from mobile to immobilized phase (cycling to quiescent transition). The modeling framework is illustrated with an example concerning the effect of TGF-beta 1 on erythropoiesis. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
1 Voltage-operated calcium channel (VOCC) antagonists are effective antihypertensive and antianginal agents but they also depress myocardial contractility. 2 We compared four L-type calcium channel antagonists, felodipine, nifedipine, amlodipine and verapamil and a relatively T-type selective calcium channel antagonist, mibefradil, on human and rat isolated tissue assays to determine their functional vascular to cardiac tissue selectivity (V/C) ratio. 3 The V/C ratio was calculated as the ratio of the IC50 value of the antagonist that reduced (by 50%) submaximally contracted (K+ 62 mM) human small arteries from the aortic vasa vasorum (vascular, V) mounted in a myograph and the IC50 value of the antagonist that reduced (-)-isoprenaline (6 nM) submaximally stimulated human right atrial trabeculae muscle (cardiac, C) mounted in organ chambers. 4 The average pIC(50) Values (-log IC50 M) for the human vascular preparations were felodipine 8.30, nifedipine 7.78, amlodipine 6.64, verapamil 6.26 and mibefradil 6.22. The average pIC(50) values for the cardiac muscle were felodipine 7.21, nifedipine 6.95, verapamil 6.91, amlodipine 5.94, and mibefradil 4.61. 5 The V/C ratio calculated as antilog [pIC(50)V-pIC(50)C] is thus mibefradil 41, felodipine 12, nifedipine 7, amlodipine 5 and verapamil 0.2. 6 In rat small mesenteric arteries the pIC(50) values for the five drugs were similar to the values for human vasa vasorum arteries contracted by K+ 62 mM. However for methoxamine (10 mu M) contraction in the rat arteries the pIC(50) values were lower for felodipine 7.24 and nifedipine 6.23, but similar for verapamil 6.13, amlodipine 6.28 and mibefradil 5.91. 7 In conclusion in the human tissue assays, the putative T-channel antagonist mibefradil shows the highest vascular to cardiac selectivity ratio; some 3 fold higher than the dihydropyridine, felodipine, and some 200 fold more vascular selective than the phenylalkylamine, verapamil. This favourable vascular to cardiac selectivity for mibefradil, from a new chemical class of VOCC antagonist, may be explained by its putative T-channel selectivity.
Resumo:
Tissue susceptibility and resistance to infection with the yeast Candida albicans is genetically regulated. Analysis of the strain distribution pattern of the C. albicans resistance gene (Carg1) and additional gene and DNA segment markers in the AKXL recombinant inbred (RI) set showed that 13/15 RI strains were concordant for Carg1, Tcra and Rib1. Therefore, Carg1 is probably located within a 17 cM segment of chromosome 14, within approximately 4 cM of the other two genes. (C) 1998 Academic Press.
Resumo:
The severity of systemic infection with the yeast Candida albicans has been shown to be under complex genetic control. C57/L mice carry an allele that is associated with an increase in tissue destruction when compared with C57BI/6 mice; however, the gene affects only the severity of tissue lesions, and does not influence the magnitude of the fungal burden in either kidney or brain. Studies in [C57/L x C57BI/6]F1 hybrid mice, and [C57/L x C57BI/6]F1 x C57/L backcross mice, demonstrated that the gene behaves as a simple Mendelian co-dominant. (C) 1998 Academic Press.
Resumo:
A scaffold of axons consisting of a pair of longitudinal tracts and several commissures is established during early development of the vertebrate brain. We report here that NOC-2, a cell surface carbohydrate, is selectively expressed by a subpopulation of growing axons in this scaffold in Xenopus. NOC-2 is present on two glycoproteins, one of which is a novel glycoform of the neural cell adhesion molecule N-CAM. When the function of NOC-2 was perturbed using either soluble carbohydrates or anti-NOC-2 antibodies, axons expressing NOC-2 exhibited aberrant growth at specific points in their pathway. NOC-2 is the first-identified axon guidance molecule essential for development of the axon scaffold in the embryonic vertebrate brain.
Resumo:
The role of T lymphocytes in host responses to sublethal systemic infection with Candida albicans was evaluated by mAb depletion of CD4(+) and CD8(+) cells from BALB/c and CBA/CaH mice, which develop mild and severe tissue damage, respectively. Depletion of CD4(+) lymphocytes from BALB/c mice markedly increased tissue damage, but did not alter the course of infection. In CBA/CaH mice, depletion of CD4+ cells abrogated tissue destruction in both brain and kidney at day 4 after infection, and significantly decreased fungal colonization in the brain. However, the severity of tissue lesions increased relative to controls from day 8 onwards. A small increase in tissue damage was evident in both mouse strains after depletion of CD8(+) cells. There were no major differences between days 4 end 8 after infection in cDNA cytokine profiles of CD4(+) lymphocytes from either BALB/c or CBA/CaH mice. After passive transfer into infected syngeneic recipients, spleen cells from infected CBA/CaH mice markedly increased tissue damage when compared to controls, and also caused a significant increase in fungal colonization in the brain. A similar transfer in BALB/c mice increased the number of inflammatory cells in and around the lesions, but had no effect on the fungal burden in brain and kidney. The data demonstrate that both CD4(+) and CD8(+) lymphocytes contribute to the reduction of tissue damage after systemic infection with C. albicans, and that the development and expression of CD4(+) lymphocyte effector function is influenced by the genetic background of the mouse.
Resumo:
OBJECTIVE: To use magnetic resonance imaging (MRI) to validate estimates of muscle and adipose tissue (AT) in lower limb sections obtained by dual-energy X-ray absorptiometry (DXA) modelling. DESIGN: MRI measurements were used as reference for validating limb muscle and AT estimates obtained by DXA models that assume fat-free soft tissue (FFST) comprised mainly muscle: model A accounted for bone hydration only; model B also applied constants for FFST in bone and skin and fat in muscle and AT; model C was as model B but allowing for variable fat in muscle and AT. SUBJECTS: Healthy men (n = 8) and women (n = 8), ages 41 - 62 y; mean (s.d.) body mass indices (BMIs) of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m2, respectively. MEASUREMENTS: MRI scans of the legs and whole body DXA scans were analysed for muscle and AT content of thigh (20 cm) and lower leg (10 cm) sections; 24 h creatinine excretion was measured. RESULTS: Model A overestimated thigh muscle volume (MRI mean, 2.3 l) substantially (bias 0.36 l), whereas model B underestimated it by only 2% (bias 0.045 l). Lower leg muscle (MRI mean, 0.6 l) was better predicted using model A (bias 0.04 l, 7% overestimate) than model B (bias 0.1 l, 17% underestimate). The 95% limits of agreement were high for these models (thigh,+/- 20%; lower leg,+/- 47%). Model C predictions were more discrepant than those of model B. There was generally less agreement between MRI and all DXA models for AT. Measurement variability was generally less for DXA measurements of FFST (coefficient of variation 0.7 - 1.8%) and fat (0.8 - 3.3%) than model B estimates of muscle (0.5-2.6%) and AT (3.3 - 6.8%), respectively. Despite strong relationships between them, muscle mass was overestimated by creatinine excretion with highly variable predictability. CONCLUSION: This study has shown the value of DXA models for assessment of muscle and AT in leg sections, but suggests the need to re-evaluate some of the assumptions upon which they are based.
Resumo:
Isolated limb perfusion (ILP) with melphalan is used to treat recurrent melanoma. This study aimed to develop a microdialysis technique for melphalan tissue concentration measurement during ILP. The effects of melphalan concentration (50-600 mu g/ml), microdialysis flow rate (0.55-17.5 mu l/min), probe length (5-50 mm) and temperature (25-41.5 degrees C) on in vitro recovery were studied. In addition, in vivo recovery was measured in rat hindlimbs perfused with melphalan using 50 mm microdialysis probes implanted subcutaneously and into muscle. Both dialysate and tissue sample melphalan concentrations were determined by high performance liquid chromatography. The in vitro recovery of melphalan was not affected by melphalan concentration or temperature, but increased with probe length and decreased with flow rate. The melphalan concentrations in subcutaneous and muscle dialysates were not significantly different. A linear relationship was found between tissue dialysate concentrations and actual tissue concentrations of melphalan (r(2) = 0.97). Microdialysis is a potential method for tissue drug monitoring which may assist in the efficacious use of cytotoxics in human ILP. (C) 2000 Lippincott Williams & Wilkins.