939 resultados para TiO2(110)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Metal oxidenanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first processproducesdirectly a two-phase material, while the sol-gelpowder never showed second phase below 600 degrees C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.
Resumo:
Nanostructured composites based on titanium dioxide have been studied in order to improve optical and photo-catalytic properties, as well as their performance in gas sensors. In this work, titanium and tin dioxides were simultaneously synthesized by the polyol method resulting in TiO2 platelet coated with SnO2 nanoparticles as was observed by scanning electron microscopy. The thermal analysis showed that the combined synthesis promotes more easily the crystallization of the TiO2 rutile phase. The composite obtained after heat treatment at 500 degrees C showed to be formed of almost only rutile phases of both oxides. The optical properties analyzed by UV-Vis spectroscopy showed that the combined oxides have higher absorbance, which reinforces a model found in the literature based on the flow of photo-generated electrons to the conduction band of SnO2 delaying the recombination of charges.
Resumo:
TiO2/SnO2 thin films heterostructures were grown by the sol-gel dip-coating technique. It was found that the crystalline structure of TiO2 depends on the annealing temperature and the substrate type. TiO2 films deposited on glass substrate, submitted to thermal annealing until 550 degrees C, present anatase structure, whereas films deposited on quartz substrate transform to rutile structure when thermally annealed at 1100 degrees C. When structured as rutile, this oxide semiconductor has very close lattice parameters to those of SnO2, making easier the heterostructure assembling. The electrical properties of TiO2/SnO2 heterostructure were evaluated as function of temperature and excitation with different light sources. The temperature dependence of conductivity is dominated by a deep level with energy coincident with the second ionization level of oxygen vacancies in SnO2, suggesting the dominant role of the most external layer material (SnO2) to the electrical transport properties. The fourth harmonic of a Nd:YAG laser line (4.65 eV) seems to excite the most external layer whereas a InGaN LED (2.75 eV) seems to excite electrons from the ground state of a quantized interfacial channel as well as intrabandgap states of the TiO2 layer.
Resumo:
The synthesis of calcium titanate, CaTiO3, was performed by mechanical activation and thermal treatment. Milling for up to 360 minutes in a planetary ball mill mechanically activated an equimolar mixture of CaCO 3 and TiO2 powders. A small amount of mechanically activated mixtures was pressed into briquettes and calcined at 850°C for two hours. The effect of mechanical activation on the solid-state reaction was studied using X-ray powder diffraction and differential thermal analysis. The change of morphology and size of powder particles due to milling, were determined by SEM, while BET analysis was used to determine the specific surface area of the powder. The sintering process was followed by a dilatometer during thermal treatment up to 1300°C. The main conclusion of the analysis of conducted investigations is that CaTiO3 ceramics can be obtained from an activated mixture at a much lower temperature than reported in the literature owing to acceleration of the chemical reaction and sintering.
Resumo:
Nanotubes have been subject of studies with regard to their ability to promote differentiation of several cells lines. Nanotubes have been used to increase the roughness of the implant surfaces and to improve bone tissue integration on dental implant. In this study TiO2 nanotube layer prepared by anodic oxidation was evaluated. Nanotube formation was carried out using Glycerol-H2O DI(50-50 v/v)+NH4F(0,5 a 1,5% and 10-30V) for 1-3 hours at 37ºC. After nanostructure formation the topography of surface was observed using field-emission-scanning-microscope (FE-SEM). Contact angle was evaluated on the anodized and non-anodized surfaces using a water contact angle goniometer in sessile drop mode with 5 μL drops. In the case of nanotube formation and no treatment surface were presented 39,1° and 75,9°, respectively. The contact angle describing the wettability of the surface is enhanced, more hydrophilic, on the nanotube surfaces, which can be advantageous for enhancing protein adsorption and cell adhesion.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Six Mile Presbyterian Church, Lancaster County, SC Records consist of photocopies of a Six Mile Creek Presbyterian Church ledger, containing minutes of church meetings, registers of pastors, elders and deacons, minutes of the church session, registers of communicants, baptisms and deaths. Six Mile Presbyterian Church was started organized sometime around 1804. Included is a note stating the original ledger was rebound in 1971.
Resumo:
The present study investigates the use of solar heterogeneous photocatalyis (TiO2) for the destruction of [D-Leu]-Microcystin-LR, powerful toxin of widespread occurrence within cyanobacteria blooms. We extracted [D-Leu]-Microcystin-LR from a culture of Microcystis spp. and used a flat plate glass reactor coated with TiO2 (Degussa, P25) for the degradation studies. The irradiance was measured during the experiments with the aid of a spectroradiometer. After the degradation experiments, toxin concentrations were determined by HPLC and mineralization by TOC analyses. Acute and chronic toxicities were, quantified using mice and phosphatase inhibition in vitro assays, respectively. According to the performed experiments, 150 min were necessary to reduce the toxin concentration to the WHO's guideline for drinking water (from 10 to 1 mu g L-1) and to mineralize 90% of the initial carbon content. Another important finding is that solar heterogeneous photocatalysis was a destructive process indeed, not only for the toxin, but also for the other extract components and degradation products generated. Moreover, toxicity tests using mice have shown that the acute effect caused by the initial sample was removed. However, tests using the phosphatase enzyme indicated that it may be formed products capable of inducing chronic effects on mammals. The performed experiments indicate the feasibility of using solar heterogeneous photocatalysis for treating contaminated water with [D-Leu]-Microcystin-LR, not only due to its destruction, but also to the significant removal of organic matter and acute toxicity that can be achieved. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The layer-by-layer (LbL) technique combined with field-effect transistor (FET) based sensors has enabled the production of pH-sensitive platforms with potential application in biosensors. A variation of the FET architecture, so called separative extended gate FET (SEGFET) devices, are promise as an alternative to conventional ion sensitive FET (ISFET). SEGFET configuration exhibits the advantage of combining the field-effect concept with organic and inorganic materials directly adsorbed on the extended gate, allowing the test of new pH-sensitive materials in a simple and low cost way. In this communication, poly(propylene imine) dendrimer (PPI) and TiO2 nanoparticles (TiO2-np) were assembled onto gold-covered substrates via layer-by-layer technique to produce a low cost SEGFET pH sensor. The sensor presented good pH sensitivity, ca. 57 mV pH(-1), showing that our strategy has potential advantages to fabricate low cost pH-sensing membranes. (C) 2012 Elsevier B.V. All rights reserved.