956 resultados para Three-dimensional characteristics
Resumo:
Three-dimensional (3D) models of teeth and soft and hard tissues are tessellated surfaces used for diagnosis, treatment planning, appliance fabrication, outcome evaluation, and research. In scientific publications or communications with colleagues, these 3D data are often reduced to 2-dimensional pictures or need special software for visualization. The portable document format (PDF) offers a simple way to interactively display 3D surface data without additional software other than a recent version of Adobe Reader (Adobe, San Jose, Calif). The purposes of this article were to give an example of how 3D data and their analyses can be interactively displayed in 3 dimensions in electronic publications, and to show how they can be exported from any software for diagnostic reports and communications among colleagues.
Resumo:
In tissue engineering, a variety of methods are commonly used to evaluate survival of cells inside tissues or three-dimensional (3D) carriers. Among these methods confocal laser scanning microscopy opened accessibility of 3D tissue using live cell imaging into the tissue or 3D scaffolds. However, although this technique is ideally applied to 3D tissue or scaffolds with thickness up to several millimetres, this application is surprisingly rare and scans are often done on slices with thickness <20 μm. Here, we present novel protocols for the staining of 3D tissue (e.g. intervertebral disc tissue) and scaffolds, such as fibrin gels or alginate beads.
Resumo:
Mechanical ventilation is not only a life saving treatment but can also cause negative side effects. One of the main complications is inflammation caused by overstretching of the alveolar tissue. Previously, studies investigated either global strains or looked into which states lead to inflammatory reactions in cell cultures. However, the connection between the global deformation, of a tissue strip or the whole organ, and the strains reaching the single cells lining the alveolar walls is unknown and respective studies are still missing. The main reason for this is most likely the complex, sponge-like alveolar geometry, whose three-dimensional details have been unknown until recently. Utilizing synchrotron-based X-ray tomographic microscopy, we were able to generate real and detailed three-dimensional alveolar geometries on which we have performed finite-element simulations. This allowed us to determine, for the first time, a three-dimensional strain state within the alveolar wall. Briefly, precision-cut lung slices, prepared from isolated rat lungs, were scanned and segmented to provide a three-dimensional geometry. This was then discretized using newly developed tetrahedral elements. The main conclusions of this study are that the local strain in the alveolar wall can reach a multiple of the value of the global strain, for our simulations up to four times as high and that thin structures obviously cause hotspots that are especially at risk of overstretching.
Resumo:
An automated algorithm for detection of the acetabular rim was developed. Accuracy of the algorithm was validated in a sawbone study and compared against manually conducted digitization attempts, which were established as the ground truth. The latter proved to be reliable and reproducible, demonstrated by almost perfect intra- and interobserver reliability. Validation of the automated algorithm showed no significant difference compared to the manually acquired data in terms of detected version and inclination. Automated detection of the acetabular rim contour and the spatial orientation of the acetabular opening plane can be accurately achieved with this algorithm.
Resumo:
The purpose of this study was to identify the anatomy of pineal region venous complex using neuronavigation software when distorted by the presence of a space-occupying lesion and to describe the anatomical relationship between lesion and veins. Moreover we discuss its influence on the choice of the surgical strategy.
Resumo:
A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.
Resumo:
In this study, we show the use of three-dimensional printing models for preoperative planning of transcatheter valve replacement in a patient with an extreme porcelain aorta. A 70-year-old man with severe aortic stenosis and a porcelain aorta was referred to our center for transcatheter aortic valve replacement. Unfortunately, the patient died after the procedure because of a potential ischemic event. Therefore, we decided to fabricate three-dimensional models to evaluate the potential effects of these constructs for previous surgical planning and simulation of the transcatheter valve replacement.
Resumo:
Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance.
Resumo:
The 3D NMR structures of six octapeptide agonist analogues of somatostatin (SRIF) in the free form are described. These analogues, with the basic sequence H-DPhe/Phe2-c[Cys3-Xxx7-DTrp8-Lys9-Thr10-Cys14]-Thr-NH2 (the numbering refers to the position in native SRIF), with Xxx7 being Ala/Aph, exhibit potent and highly selective binding to human SRIF type 2 (sst2) receptors. The backbone of these sst2-selective analogues have the usual type-II' beta-turn reported in the literature for sst2/3/5-subtype-selective analogues. Correlating the biological results and NMR studies led to the identification of the side chains of DPhe2, DTrp8, and Lys9 as the necessary components of the sst2 pharmacophore. This is the first study to show that the aromatic ring at position 7 (Phe7) is not critical for sst2 binding and that it plays an important role in sst3 and sst5 binding. This pharmacophore is, therefore, different from that proposed by others for sst2/3/5 analogues.
Resumo:
Precise intraoperative assessment of the architecture of the biliary tree could reduce lesions to intra- or extrahepatic bile ducts. The aim of this study was to test feasibility of intraoperative three-dimensional imaging during liver resections. Isocentric C-arm fluoroscopy acquires three-dimensional images during a 190 degrees orbital rotation. The bile ducts were displayed three-dimensionally by realtime rotational projections or multiplanar reconstructions. The technique was established ex vivo in a preserved cadaveric human liver. Intraoperative three-dimensional cholangiography was performed in five patients with centrally located liver malignancies. Complete data acquisition in 3 patients depicted precise anatomical details of the architecture of the biliary tree up to third order divisions. Biliary imaging can be improved by the application of real-time intraoperative three-dimensional cholangiography. For the development of computer-aided navigation in hepatobiliary procedures, this technique could be an important prerequisite for defining landmarks of the liver in a three-dimensional space.
Resumo:
OBJECTIVE: To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. SAMPLE POPULATION: Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. PROCEDURE: Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. RESULTS: Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. CONCLUSIONS AND CLINICAL RELEVANCE: Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.